
Security Review – Phase 1
forWire Swiss GmbH

Final Report

2017-02-08

FOR PUBLIC RELEASE

Security Review – Phase 1 Wire Swiss GmbH

Revision Date Change

1 2016-11-24 Start of review
2 2016-11-28 Initial report creation
3 2017-01-04 Final findings added
4 2017-01-09 Delivery toWire
5 2017-02-08 Public version (formatting, severity ratings)

FOR PUBLIC RELEASE Page 1 of 29

Contents

1 Executive Summary 4

2 Introduction 5

2.1 Findings overview . 5
2.2 Scope . 5
2.3 Methodology . 6

3 Findings in Proteus (Rust) 7

3.1 WIRE-P1-000: DH accepts degenerate keys . 7
3.2 WIRE-P1-001: Invalid public keys undetected 9
3.3 WIRE-P1-002: Thread-unsafety risk . 11
3.4 WIRE-P1-003: Secret values not zeroized . 14
3.5 Differences with the specifications . 15
3.6 Possible improvements . 17

4 Findings in Proteus (CoffeeScript) 18

2

Security Review – Phase 1 Wire Swiss GmbH

4.1 WIRE-P1-004: DH accepts degenerate keys . 18
4.2 WIRE-P1-005: Invalid public keys undetected 19
4.3 WIRE-P1-006: Secret values not zeroized . 20
4.4 WIRE-P1-007: Thread-unsafety risk . 21

5 Findings in Cryptobox and CBOR 22

5.1 WIRE-P1-008: Strings NULL termination . 23
5.2 WIRE-P1-009: Null pointers check . 23
5.3 WIRE-P1-010: Prekey length value . 24
5.4 WIRE-P1-011: Cryptobox-c tests buffer overread 24
5.5 WIRE-P1-012: CBOR arithmetic overflow . 25
5.6 WIRE-P1-013: CBOR Lax parsing of serialized data 27

6 About 29

FOR PUBLIC RELEASE Page 3 of 29

1 Executive Summary

This security assessment focused onWire’s core cryptographic components: the Proteus
protocol, and the Cryptobox API built over Proteus.
The components reviewedwere found to have a high security, thanks to state-of-the-art
cryptographic protocols and algorithms, and software engineering practices mitigating
the risk of software bugs. Issues were nonetheless found, with some of them potentially
leading to a degraded security level. None of the issues found is critical in terms of
security.
We for example found that invalid public keys could be transmitted andprocessedwithout
raising an error. As a consequence, the shared secret negotiated by communicating
parties becomes predictable, which in turns weakens security guarantees in terms of
“break-in recovery”. The root cause of this issue is a bug in a third-party component
(neglect to verify an error code).
We recommend that this issue be fixed, and that other security improvements be imple-
mented to address thread-unsafety risks, sensitive data in memory, and other aspects as
described in this report.
The work was performed between November 23rd, 2016 and January 9th, 2017, by
Jean-Philippe Aumasson (Kudelski Security) and Markus Vervier (X41 D-Sec GmbH).
A total of 14 person-days were spent, with most of the time spent reviewing code and
investigating potential security issues. Wire provided the source code of all components
to be reviewed, including approximately 3300 lines or Rust, 2400 lines of CoffeeScript,
and 400 lines of C.

4

2 Introduction

2.1 FINDINGS OVERVIEW

DESCRIPTION ID SEVERITY SECTION
Insecure DH ratchet keys (Rust) WIRE-P1-000 LOW 3.1
Invalid public keys undetected WIRE-P1-001 LOW 3.2
Thread-unsafety risk WIRE-P1-002 MEDIUM 3.3
Secret values not zeroized WIRE-P1-003 LOW 3.4
Insecure DH ratchet keys (JS) WIRE-P1-004 LOW 4.1
Invalid public keys undetected WIRE-P1-005 LOW 4.2
Secret values not zeroized WIRE-P1-006 LOW 4.3
Thread-unsafety risk WIRE-P1-007 MEDIUM 4.4
Strings NULL termination WIRE-P1-008 MEDIUM 5.1
Null pointers check WIRE-P1-009 LOW 5.2
Prekey length value WIRE-P1-010 LOW 5.3
Cryptobox-c tests buffer overread WIRE-P1-011 MEDIUM 5.4
CBOR arithmetic overflow in decoding WIRE-P1-012 LOW 5.5
CBOR Lax parsing of serialized data WIRE-P1-013 MEDIUM 5.6

Table 2.1: Security relevant findings.

2.2 SCOPE

We reviewed the Proteusmessaging protocol as implemented in the proteus repository,
as of November 28th in version 6b317191 (we consider projects as hosted on https:

//github.com/wireapp). We performed amostly manual review of that code, as well as
of its dependencies created byWire (cbor-codec and hkdf).

5

https://github.com/wireapp
https://github.com/wireapp

Security Review – Phase 1 Wire Swiss GmbH

Core cryptographic components were provided by the Sodium library via wrappers at
https://github.com/dnaq/sodiumoxide. We did not perform a comprehensive review
of Sodium, but only of certain components critical to Proteus’ security.
Third-party references used for the review include https://whispersystems.org/docs/
(Revision 1 versions), as well as the report of a previous audit, as provided byWire.
We also reviewed the Cryptobox API (cryptobox repository) as well as its C wrapper
(cryptobox-c). Cryptobox defines a simple, high-level API to Proteus in order to hide the
protocol’s complexity to callers inWire applications.
Finally, we reviewed the CoffeeScript counterparts of Proteus and cryptobox, as imple-
mented in the proteus.js and cryptobox.js.

2.3 METHODOLOGY

We sought security issues in the Proteus protocol implementations both in terms of
functionality (does in behave as intended, and in particular as specified?), of software
security (are there software bugs exploitable by an attacker?), and of usage (will theWire
applications use Proteus securely via the cryptobox API?).
All discovered issueswere classified using CommonWeakness Enumeration (CWE)1. Due
to the nature of reviewing library components and protocols the usage of the Common
Vulnerability Scoring System (CVSS)2 was not applicable. Therefore all issues were rated
using a severity rating of low, medium, high or critical based on the possible security impact
in common use cases and secure coding and design best practices.

1https://cwe.mitre.org
2https://www.first.org/cvss

FOR PUBLIC RELEASE Page 6 of 29

https://github.com/dnaq/sodiumoxide
https://whispersystems.org/docs/
https://cwe.mitre.org
https://www.first.org/cvss

3 Findings in Proteus (Rust)

As discussed withWire, the following issues are already known and the associated risk is
accepted:

• The version byte in amessage envelope is not authenticated. This does no harm in
the current version, since the version byte is not interpreted by the receiver.

• Prekeys are not signed, which leaves the protocol vulnerable to attackers that 1)
serve forged prekeys and 2) later compromise the identity key belonging to the
supposed creator of the prekeys.

In the following, we present security issues discovered during the review. We conclude
by discussing minor differences with the documented protocols, and by proposing im-
provements to the protocol and code. Well-known inherent properties of the protocol
such as unknown key-share attacks will not be discussed.

3.1 WIRE-P1-000: DH ACCEPTS DEGENERATE KEYS

Severity: LOW
CWE: 358

If an all-zero ratchet public key is received, then the resulting shared secret will be zero
regardless of the value of the secret key—whereas such a degenerate key should be
rejected as invalid. Therefore, if Bob sends all-zero ratchet public keys, subsequent

7

Security Review – Phase 1 Wire Swiss GmbH

message keys will only depend on the root key and not on Alice’s ephemeral private keys.
A dishonest peermay therefore keep sending degenerate keys in order to reduce break-in
recovery guarantees, or force all sessions initiated by a third party to use a samemessage
key, while a network attacker may force the first message keys to a public constant value,
for example.
The root cause is that sodiumoxide’s Rust bindings to libsodium do not check the return
value of crypto_scalarmult_curve25519, whereas the corresponding C function does
check whether it computes an all-zero shared secret (indicating a degenerate, insecure
behavior) and returns a non-zero value in this case.
In the proof-of-concept program below, a shared secret is computed using a random
private key sk and an all zero public key pk:

extern crate sodiumoxide;

fn main() {
sodiumoxide::init();
let pk = [0u8; 32];
let mut sk = [0u8; 32];
sodiumoxide::randombytes::randombytes_into(&mut sk);
let p = sodiumoxide::crypto::scalarmult::GroupElement(pk);
let s = sodiumoxide::crypto::scalarmult::Scalar(sk);
let h = sodiumoxide::crypto::scalarmult::scalarmult(&s, &p);
println!("{:?}", sk)
println!("{:?}", h)

}

When executed, this program will always print the same all-zero shared secret value,
whatever the value of the private key:

$./target/debug/poc_zerokey

[25, 128, 231, 205, 226, 155, 42, 69, 58, 63, 117, 20, 231, 1, 8, 62,

20, 233, 74, 113, 51, 253, 162, 201, 120, 178, 63, 120, 155, 25, 17,

141]

GroupElement([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

FOR PUBLIC RELEASE Page 8 of 29

Security Review – Phase 1 Wire Swiss GmbH

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

$./target/debug/poc_zerokey

[39, 124, 213, 115, 23, 77, 104, 78, 102, 188, 91, 233, 242, 114, 63,

173, 111, 182, 177, 122, 248, 40, 255, 132, 194, 121, 41, 168, 10, 97,

255, 147]

GroupElement([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

To fix this issue, Proteusmust check the value of the shared secret and throw an error if
the all-zero value is found. We believe that the issue should also be reported to, and fixed
by sodiumoxide (inwhich case the above checkmaybe replacedby a checkof sodiumoxide
function’s return value).
Note that the same behavior occurs if the public key is 010000...00, that is, the result of
converting an all-zero Ed25519 key to Curve25519 format.

3.2 WIRE-P1-001: INVALID PUBLIC KEYS UNDETECTED

Severity: LOW
CWE: 325

When PreKeyBundle::deserialise() is called when processing a PreKeyBundle, if an
invalid public key is included (that is, a point not on the curve), be it as prekey public key
or identity, then the deserialized public key receivedwill be the all-zero point.
An attacker may therefore serve prekey bundles with invalid public keys, which will lead
to a triple Diffie-Hellman handshake using all-zero public-keys in place of Bob’s prekey
and identity key. As a result, the handshake’s result will always be the same value, and it
will be independent fromAlice’s private keys, by exploiting the issue in §3.1. This may in
turn lead to predictable message keys.
The root cause is thatwhen libsodium’s ffi::crypto_sign_ed25519_pk_to_curve25519
receives an invalid Ed25519 public key, it leaves the receiving buffer unchanged and

FOR PUBLIC RELEASE Page 9 of 29

Security Review – Phase 1 Wire Swiss GmbH

returns -1, as the following codewill demonstrate for the invalid key fffff...ff00:

// gcc -lsodium poc_keyconversion.c

#include <sodium.h>
#include <string.h>

#define KEYLEN 32

int main() {
unsigned char cpk[KEYLEN];
unsigned char epk[KEYLEN];
int ret, i;

memset(epk, 0xff, KEYLEN);
epk[31] = 0x00;
memset(cpk, 0xff, KEYLEN);

ret = crypto_sign_ed25519_pk_to_curve25519(cpk, epk);
printf("%d\n", ret);

for(i=0; i<KEYLEN; ++i)
printf("%02x", cpk[i]);

printf("\n");

return 0;
}

In Proteus’ from_ed25519_pf() however, called by PublicKey::decode(), the return
value is not checked and therefore the all-zero array ep remains all-zero when an invalid
k is received:

pub fn from_ed25519_pk(k: &sign::PublicKey) -> [u8; ecdh::GROUPELEMENTBYTES] {
let mut ep = [0u8; ecdh::GROUPELEMENTBYTES];
unsafe {

ffi::crypto_sign_ed25519_pk_to_curve25519(ep.as_mut_ptr(), (&k.0).as_ptr());
}
ep

}

FOR PUBLIC RELEASE Page 10 of 29

Security Review – Phase 1 Wire Swiss GmbH

Thecall path to thevulnerable code isPreKeyBundle::deserialise()→PreKeyBundle::decode()

→PublicKey::decode()→from_ed25519_pk→ffi::crypto_sign_ed25519_pk_to_curve25519.
PreKeyBundle::deserialise() is called in cryptobox’ session_from_prekey() and in
cryptobox-c’s cbox_is_prekey().
A solution is to verify the return value of crypto_sign_ed25519_pk_to_curve25519 and
refuse to proceed if an invalid key is received.

3.3 WIRE-P1-002: THREAD-UNSAFETY RISK

Severity: MEDIUM
CWE: 252

Because Proteus does not check correct initialization of libsodium, it may be affected by
an incorrect initialization.
The sodiumoxide Rust wrapper over libsodium requires proper initialization in order to
behave securely, as noted in the file sodiumoxide-0.0.12/src/randombytes.rs, used by
Proteus:

/// ‘randombytes()‘ randomly generates size bytes of data.
///
/// THREAD SAFETY: ‘randombytes()‘ is thread-safe provided that you have
/// called ‘sodiumoxide::init()‘ once before using any other function
/// from sodiumoxide.
pub fn randombytes(size: usize) -> Vec<u8> {

...

The said sodiumoxide::init() function is called in Proteus, but its success not checked:
Proteus’ ‘lib.rs‘ indeed includes

FOR PUBLIC RELEASE Page 11 of 29

Security Review – Phase 1 Wire Swiss GmbH

pub fn init() {
sodiumoxide::init();

}

In contrast, sodiumoxide’s lib.rs correctly includes the check for success:

/// ‘init()‘ initializes the sodium library and chooses faster versions of
/// the primitives if possible. ‘init()‘ also makes the random number generation
/// functions (‘gen_key‘, ‘gen_keypair‘, ‘gen_nonce‘, ‘randombytes‘, ‘randombytes_into‘)
/// thread-safe
///
/// ‘init()‘ returns ‘false‘ if initialization failed.
pub fn init() -> bool {

unsafe {
ffi::sodium_init() != -1

}
}

Here sodium_init() is the FFI-imported C function from Sodium, defined as follows in
libsodium/src/libsodium/sodium/core.c:

int
sodium_init(void)
{

if (sodium_crit_enter() != 0) {
return -1;

}
if (initialized != 0) {

if (sodium_crit_leave() != 0) {
return -1;

}
return 1;

}
_sodium_runtime_get_cpu_features();
randombytes_stir();
_sodium_alloc_init();
_crypto_pwhash_argon2i_pick_best_implementation();
_crypto_generichash_blake2b_pick_best_implementation();

FOR PUBLIC RELEASE Page 12 of 29

Security Review – Phase 1 Wire Swiss GmbH

_crypto_onetimeauth_poly1305_pick_best_implementation();
_crypto_scalarmult_curve25519_pick_best_implementation();
_crypto_stream_chacha20_pick_best_implementation();
initialized = 1;
if (sodium_crit_leave() != 0) {

return -1;
}
return 0;

}

sodium_init()will fail when lock or unlock of the _sodium_lockmutex fails. This may
happen for example if calling sodium_init() from two concurrent threads.
Consequences of amisinitialized context can be the following:

• Sodiummay not pick the best implementations of crypto algorithms (it will default
to the reference ones).

• The pseudorandom number generator (PRNG)may not be initialized correctly. But
this should only be a problem when a custom PRNG is used, as opposed to the
default one (such as /dev/urandom).

• The heap canary will not be random, and therefore becomes less useful to mitigate
memory corruption vulnerabilities.

Fixing the issue just consists in recording the return value of sodiumoxide::init() in
Proteus’ init, as follows (note the absence of semicolon):

pub fn init() -> bool {
sodiumoxide::init()

}

FOR PUBLIC RELEASE Page 13 of 29

Security Review – Phase 1 Wire Swiss GmbH

3.4 WIRE-P1-003: SECRET VALUES NOT ZEROIZED

Severity: LOW
CWE: 316

To avoid leaking secrets through core dumps or memory reuse by other processes, it’s
recommended to zeroize thememory holding secret values after usage. For this, sodiu-
moxide uses Rust’s Drop trait in order to zeroize keys when the go out of scope. This is
implemented in the new_typemacro of sodiumoxide:

macro_rules! new_type {
($(#[$meta:meta])*

secret $name :ident($bytes :expr);
) => (

$(#[$meta])*
#[must_use]
pub struct $name (pub [u8; $bytes]);
newtype_clone!($name);
newtype_traits!($name , $bytes);
impl $name {

newtype_from_slice!($name , $bytes);
}
impl Drop for $name {

fn drop(&mut self) {
use utils::memzero;
let &mut $name (ref mut v) = self;
memzero(v);

}
}
);

(...)

Proteus relies on this zeroized type for the types CipherKey, MacKey, SecretKey as used
to hold chain keys, message keys, ratchet keys’ secret, and so on.
However, when Proteus’ kdf calls hkdf::hkdf(), the result is a Vec<u8> type (okm), which
is not zeroized after usage.

FOR PUBLIC RELEASE Page 14 of 29

Security Review – Phase 1 Wire Swiss GmbH

To fix this, okmmay be directly zeroized in hkdf::hkdf(). The output of hkdf::hkdf()
may also be redefined as (say) a stream::Key type in order to benefit from the Drop
zeroizingmethod.
For an stronger protection of secret values, the following library may be used: https:
//github.com/stouset/secrets.

3.5 DIFFERENCES WITH THE SPECIFICATIONS

We highlight minor discrepancies between Proteus and the documented x3DH and
double-ratchet protocols:

3.5.1 Chain key generation

Instead of using only a key derivation function (KDF) as the double-ratchet documenta-
tion recommends, Proteus uses

1. AMAC (HMAC-SHA-256) to generate a new chain key from a previous chain key,
2. A KDF (HKDF. . .) to generatemessage keys from a chain key.

This is acceptable because HMAC-SHA-256 behaves as a pseudorandom function (PRF),
and therefore gives keys of similar strengths as if they were generated by a proper KDF.

3.5.2 Session initialization

The double-ratchet specification summarizes the session states initialization as follow:

def RatchetInitAlice(state, SK, bob_dh_public_key):
state.DHs = GENERATE_DH()
state.DHr = bob_dh_public_key

FOR PUBLIC RELEASE Page 15 of 29

https://github.com/stouset/secrets
https://github.com/stouset/secrets

Security Review – Phase 1 Wire Swiss GmbH

state.RK, state.CKs = KDF_RK(SK, DH(state.DHs, state.DHr))
state.CKr = None
state.Ns = 0
state.Nr = 0
state.PN = 0
state.MKSKIPPED = {}

def RatchetInitBob(state, SK, bob_dh_key_pair):
state.DHs = bob_dh_key_pair
state.DHr = None
state.RK = SK
state.CKs = None
state.CKr = None
state.Ns = 0
state.Nr = 0
state.PN = 0
state.MKSKIPPED = {}

and the document notes: “This assumes Alice begins sending messages first, and Bob
doesn’t sendmessages until he has received one of Alice’s messages. To allow Bob to send
messages immediately after initialization Bob’s sending chain key and Alice’s receiving
chain key could be initialized to a shared secret. For the sake of simplicity we won’t
consider this further.”
Proteus uses such a trick and initializes Alice’s receiving chain key (that is, Bob’s sending
chain key) to a key derived from the initial shared secret (an extension of (SK) using the
OWS notations, and dsecs.mac_key in SessionState initializers.
This chain key is derived from the triple DH key agreement but is otherwise unrelated
to the value used as a root key. According to our analysis, this construction is sound and
secure.

FOR PUBLIC RELEASE Page 16 of 29

Security Review – Phase 1 Wire Swiss GmbH

3.6 POSSIBLE IMPROVEMENTS

3.6.1 Use an authenticated cipher instead of a cipher and aMAC

Currently encryption andMAC authentication are realized with two separate algorithms
(and thus using two distinct keys): ChaCha andHMAC-SHA-256. Using a single authenti-
cated cipher would simplify things (a single key instead of two keys, a single call to the
crypto library, etc.) and provide a slight speed-up (one pass over the data, less computa-
tion).
For this, sodiumoxide provides the xsalsa20poly1305 “secret box” function.

3.6.2 Counters randomization

Chain key counters are assumed to be non-secret values, however they could leak the
number of messages exchangedwith a given party, since they are initialized to zero. To
avoid leaking the number of messages, the counters may be initialized to a random value
and incremented by ensuring that they’ll wrap around the limits of the u32 type.

3.6.3 Codewarnings

The static analyzer rust-clippy (https://github.com/Manishearth/rust-clippy) re-
ports a number of harmless warnings for Proteus (absence of Default implementations,
redundant closure, clone on a Copy type, needless borrows, etc.).

FOR PUBLIC RELEASE Page 17 of 29

https://github.com/Manishearth/rust-clippy

4 Findings in Proteus (CoffeeScript)

After reviewing the Rust implementation of Proteus, we reviewed its CoffeeScript coun-
terpart. We first checked if issues found in the Rust implementations occurred in the
CoffeeScript version as well, and then looked for specific issues.
Possible improvements to the protocol proposed in §§3.6.2 and §§3.6.1 apply as well to
the CoffeeScript implementation.

4.1 WIRE-P1-004: DH ACCEPTS DEGENERATE KEYS

Severity: LOW
CWE: 358

This is a similar issue as the one reported for the Rust version in §3.1: public keys lead-
ing to an all-zero shared secreet will be accepted as valid public keys and will be used
within the Diffie-Hellman operation SecretKey.shared_secret, defined as follows in
SecretKey.coffee:

shared_secret: (public_key) ->
TypeUtil.assert_is_instance PublicKey, public_key

return sodium.crypto_scalarmult @sec_curve, public_key.pub_curve

18

Security Review – Phase 1 Wire Swiss GmbH

Neither this function nor its callers verify that the DH result is zero.
We can verify the issue as follows:

> b.public_key.pub_curve

[1, 0,

0, 0, 0, 0, 0, 0, 0, 0]

> a.secret_key.shared_secret(b.public_key)

[0, 0,

0, 0, 0, 0, 0, 0, 0, 0]

We recommend to check that a public key is not the point at infinity at the earliest stage,
namely when deserializing the point received.

4.2 WIRE-P1-005: INVALID PUBLIC KEYS UNDETECTED

Severity: LOW
CWE: 325

This is a similar issue as the one reported for the Rust version in §3.2, but with different
implications: the following function fromed2curvedoesnot check thevalidity of Ed25519
public keys, therefore PreKeyBundle.deserialise()will accept invalid keys:

function convertPublicKey(pk) {
var z = new Uint8Array(32),

y = gf(), a = gf(), b = gf();

unpack25519(y, pk);

A(a, gf1, y);
Z(b, gf1, y);
inv25519(b, b);
M(a, a, b);

FOR PUBLIC RELEASE Page 19 of 29

Security Review – Phase 1 Wire Swiss GmbH

pack25519(z, a);
return z;

}

Unlike the Rust bug in §3.2, however, the result will be an incorrect Curve25519 key
rather than the all-zero point, which reduces the security impact.
This issue has been reported to the maintainer of ed2curve, who fixed it in https://
github.com/dchest/ed2curve-js/releases/tag/v0.2.0. A solution is therefore to up-
date to the latest version of ed2curve.

4.3 WIRE-P1-006: SECRET VALUES NOT ZEROIZED

Severity: LOW
CWE: 316

Secret values that run out of scope will have their memory freed by the garbage collector,
however the values will remain inmemory until overwritten. Objects such as ChainKey,
SecretKey, MessageKeymay therefore be exposed to other processes or through a core
dump.
Whereas the Rust implementation zeroizes most secret values via sodiumoxide’s use
of the Drop trick, the Coffeescript doesn’t erase the secret values before releasing the
memory. The memzero() function from libsodium.js can be used in order to wipe an
Uint8Array of its secret values.

FOR PUBLIC RELEASE Page 20 of 29

https://github.com/dchest/ed2curve-js/releases/tag/v0.2.0
https://github.com/dchest/ed2curve-js/releases/tag/v0.2.0

Security Review – Phase 1 Wire Swiss GmbH

4.4 WIRE-P1-007: THREAD-UNSAFETY RISK

Severity: MEDIUM
CWE: 252

This is a similar issue as the one reported in §3.3: when libsodium is initialized in proteus.js
(libsodium._sodium_init();), the return value is not checked.
Proteus should therefore verify that the said return value is zero, and return an error
otherwise.

FOR PUBLIC RELEASE Page 21 of 29

5 Findings in Cryptobox and CBOR

We reviewed the Cryptobox API, as used to expose the Proteus functionality to Wire
applications. Since cryptobox does not add logical complexity, but instead simplifies
Proteus through a thin abstraction layer, it has a limited attack surface and does not
appear as amajor source of bugs.
Additionallywe reviewed theCBORcodec (fromhttps://gitlab.com/twittner/cbor-codec)
using automated fuzz-testing and manual inspection. CBOR is one of the core compo-
nents of theWire stack, and is used by the Proteus implementation.
The Cryptobox C API (cryptobox-c repository) over the Rust cryptobox code as well
as the Rust implementation of CBOR could bemade safer by fixing the followingminor
issues:

22

https://gitlab.com/twittner/cbor-codec

Security Review – Phase 1 Wire Swiss GmbH

5.1 WIRE-P1-008: STRINGSNULL TERMINATION

Severity: MEDIUM
CWE: 170

If character arrays are not NULL-terminated, the Rust codemay convert data out of the
original bounds to a string. For example, cbox_session_init_from_message() takes a
char const* sid passed to the to_str() function from lib.rs, which calls the unsafe
Cstr::from_ptr() on the pointer received.
Since Cstr::from_ptr()will recalculate the string length, looking for a null character,
the program will read outside the original buffer if no such null character is found as
expected.
Amalicious caller may then providemalformed strings that will crash the library or even
try to avoid a crash and incorporate data into the session id that lies behind the original
buffer inmemory. For example, an attackermaymodify the initializationmessage sent
fromAlice to Bob so that Bob receives amalformed string that will crash his system (we
haven’t verified such exploitability, however).
Depending on the context an attackermight be able to subsequently exploit this condition
similarly to a use after free.
To improve safe usage of the exposed API and functions, it is recommended to change the
API in order to avoid unintentional unsafe usage.

5.2 WIRE-P1-009: NULL POINTERS CHECK

Severity: LOW
CWE: 476

Pointers are not checked for the NULL value. For example, cbox_encrypt()will segfault
FOR PUBLIC RELEASE Page 23 of 29

Security Review – Phase 1 Wire Swiss GmbH

if any of the three pointers received is null; cbox_session_init_from_message()with a
null SIDwill segfault because of the unsafe CStr::from_ptr(); and so on.
This makes the library less resilient against misuse by caller applications, andmay result
in unsafe behavior.
The issue can befixed by having a library exposingC functions that first check the pointers
and then calls the functions implemented in Rust.

5.3 WIRE-P1-010: PREKEY LENGTH VALUE

Severity: LOW
CWE: 20

The value of c_prekey_len in cbox_session_init_from_prekey() is not checked. In the
usage in the test_basic() test, CBORwill return an error if c_prekey_len is 82 or less,
but won’t return an error for any other size provided (even 0xffffffffffffffff).
It would be safer to verify that the length receives belongs to the range of authorized
values.

5.4 WIRE-P1-011: CRYPTOBOX-C TESTS BUFFER OVERREAD

Severity: MEDIUM
CWE: 125

The test suite of cryptobox-c includes aminor buffer overread, when comparing a plain-
text and the corresponding ciphertext:

FOR PUBLIC RELEASE Page 24 of 29

Security Review – Phase 1 Wire Swiss GmbH

assert(strncmp((char const *) hello_bob, (char const *) cbox_vec_data(cipher), \
cbox_vec_len(cipher)) != 0);

Here the assert() aims to check that the ciphertext does differ from the plaintext. But it
assumes that theplaintext has the same lengthas the ciphertext, namelycbox_vec_len(cipher),
which is wrong. For example, in test_basics() the plaintext is 11-byte long whereas the
ciphertext is 197-byte.

5.5 WIRE-P1-012: CBOR ARITHMETIC OVERFLOW

Severity: LOW
CWE: 190

The following issue relates to the decoding of data serialized using cbor-codec: when
values are skipped, the length field of an object might be too large and cause a length
calculation to wrap around.
Themethodcbor::Decoder::skip() in turn calls themethodcbor::Decoder::skip_value():

pub fn skip(&mut self) -> DecodeResult<(> {
let start = self.config.max_nesting;
self.skip_value(start).and(Ok(()))

}

fn skip_value(&mut self, level: usize) -> DecodeResult<bool> {

Inside this method the serialized fields are skipped over. In case of a field of type Object,
the amount to skip over is calculated like this:

(Type::Object, a) => {
let n = 2 * try!(self.kernel.unsigned(a));

FOR PUBLIC RELEASE Page 25 of 29

Security Review – Phase 1 Wire Swiss GmbH

for _ in 0 .. n {
try!(self.skip_value(level - 1));

}
Ok(true)

}

The calculation let n = 2 * try!(self.kernel.unsigned(a)) might cause an arith-
metic overflow. This was discovered during fuzz testing where invalid object size values
led to a panic (in debugmode):

test_basics ... thread ’<unnamed>’ panicked at ’attempt to multiply with
overflow’,
.cargo/registry/src/github.com-1ecc6299db9ec823/cbor-codec-0.6.0/src/decoder.rs:890

While in debugmode rust will panic due to arithmetic overflows, this check is omitted in
releasemode compilations.
An attackermight cause a panic if the codewas compiled in debugmode. If itwas compiled
in releasemode this behaviour might lead to different results in different parsers. When
the overflow occurs a very large value might be truncated to a very small value. Since
the return value of self.kernel.unsinged(a) is of type U64 this would mean a value
of (maximum size U64 / 2) + 1would result in a size of zero after multiplication. So
the current implementation would not discard such an insanely large value but continue
parsing, whereas another parser would discard it. Therefore the decryption result would
be different which could be exploited in the right context.
It is recommended to define a safemaximum length value for an object. Additionally all
arithmetic operations not expected to overflow should use the checked rust arithmetic
operations such as checked_mul1 in this case.
It is recommended to define a safemaximum length value for an object. Additionally all
arithmetic operations not expected to overflow should use the checked rust arithmetic
operations such as checked_mul2 in this case.

1https://doc.rust-lang.org/std/primitive.i32.html#method.checked_mul
2https://doc.rust-lang.org/std/primitive.i32.html#method.checked_mul

FOR PUBLIC RELEASE Page 26 of 29

https://doc.rust-lang.org/std/primitive.i32.html#method.checked_mul
https://doc.rust-lang.org/std/primitive.i32.html#method.checked_mul

Security Review – Phase 1 Wire Swiss GmbH

5.6 WIRE-P1-013: CBORLAX PARSING OF SERIALIZED DATA

Severity: MEDIUM
CWE: 707

The parsing and handling of values that are deserialized and decoded using CBORmay
lead to unintended behaviour depending on the context it is used in.
Whendecodingmessages andother data structures inProteus, afield that occursmultiple
times will be accepted as valid (recording only the latest entry) and fields with unknown
tags are often ignored.
This was for example observed in the following code from src/internal/message.rs:

fn decode<’s, R: Read + Skip>(d: &mut Decoder<R>) -> DecodeResult<PreKeyMessage<’s>> {
let n = try!(d.object());
let mut prekey_id = None;
let mut base_key = None;
let mut identity_key = None;
let mut message = None;
for _ in 0 .. n {

match try!(d.u8()) {
0 => prekey_id = Some(try!(PreKeyId::decode(d))),
1 => base_key = Some(try!(PublicKey::decode(d))),
2 => identity_key = Some(try!(IdentityKey::decode(d))),
3 => message = Some(try!(CipherMessage::decode(d))),
_ => try!(d.skip())

}
}

While this does not result in any immediate vulnerability, lax parsingmight lead to unfore-
seen consequences in situations where other parsing implementationmight be used.
For example in the code shown above, a field might occur multiple times (e.g., the field
identity_key). While in this implementation only the last decoded identity_key field

FOR PUBLIC RELEASE Page 27 of 29

Security Review – Phase 1 Wire Swiss GmbH

will be the one used, other implementations might for example use the first one. In
cryptographic contexts this has been used3 to bypass signatures in the past.
Similar behavior was observed in multiple locations in the Proteus library as well as in the
Cryptobox rust implementation.
It is recommended to enforce strict parsing and disallowmultiple fields with the same tag.
Processing should be terminated in case unknown tag values are encountered. Since the
behavior was observed inmultiple locations, all code that decodes serialized data should
be checked.

3http://theprivacyblog.com/android-2/easy-bypass-to-android-app-signing-discovered/

FOR PUBLIC RELEASE Page 28 of 29

http://theprivacyblog.com/android-2/easy-bypass-to-android-app-signing-discovered/

6 About

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of secu-
rity experts delivers end-to-end consulting, technology, managed services, and threat
intelligence to help organizations build and run successful security programs. Our global
reach and cyber solutions focus is reinforced by key international partnerships.
Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.
Kudelski Security
route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland
X41 D-Sec is an expert provider for application security services. Founded in 2015 by
Markus Vervier, X41D-Sec relies on extensive industry experience and expertise in the
area of information security. A strong core security team of world class security experts
enables X41 D-SEC to perform premium security services in the area of code review,
binary reverse engineering and vulnerability discovery.
For more information, please visit https://www.x41-dsec.de.
X41D-Sec GmbH
Dennewartstr. 25-27
D-52068 Aachen
Amtsgericht Aachen: HRB19989

29

https://www.kudelskisecurity.com

	Executive Summary
	Introduction
	Findings overview
	Scope
	Methodology

	Findings in Proteus (Rust)
	WIRE-P1-000: DH accepts degenerate keys
	WIRE-P1-001: Invalid public keys undetected
	WIRE-P1-002: Thread-unsafety risk
	WIRE-P1-003: Secret values not zeroized
	Differences with the specifications
	Possible improvements

	Findings in Proteus (CoffeeScript)
	WIRE-P1-004: DH accepts degenerate keys
	WIRE-P1-005: Invalid public keys undetected
	WIRE-P1-006: Secret values not zeroized
	WIRE-P1-007: Thread-unsafety risk

	Findings in Cryptobox and CBOR
	WIRE-P1-008: Strings NULL termination
	WIRE-P1-009: Null pointers check
	WIRE-P1-010: Prekey length value
	WIRE-P1-011: Cryptobox-c tests buffer overread
	WIRE-P1-012: CBOR arithmetic overflow
	WIRE-P1-013: CBOR Lax parsing of serialized data

	About

