
Wire Security Review – Phase 2 – iOS Client
forWire Swiss GmbH

Final Report

2018-03-07

FOR PUBLIC RELEASE

Contents

1 Summary 2

2 iOS Client Review 3

2.1 Privacy . 4
2.2 Cryptography . 7
2.3 Storage . 8
2.4 Network . 10
2.5 Platform . 11
2.6 CodeQuality . 12
2.7 Implementation Security Issues . 14
2.8 Authentication . 23

3 About 24

1

1 Summary

This report is a review of Wire’s iOS application security and privacy, describing
strengths and limitations, and highlighting a number of minor shortcomings and potential
improvements. We also report one low-severity software bug and three
medium-severity bugs. The source code audit otherwise reflected adherence to secure
software development principles, as well as leverage of the platform’s security features.
As noted throughout the report, Wire has adequately addressed the security issues
reported.
This review does not cover:

• The core cryptography component Proteus, previously already reviewed 1 .
• The callingmechanism, covered in a separate review.
• Code of third-party dependencies.

The work was performed between August and November 2017, by Jean-Philippe
Aumasson (Kudelski Security) andMarkus Vervier (X41D-Sec GmbH). A total of 10.75
person-days were spent.

1https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf

2

https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf

2 iOS Client Review

We reviewed security and privacy features of theWire iOS client, mainly based on the
source code review, as well as on dynamic analysis of the officialWire application using a
jailbroken device and test devices. The following sections review how the Wire iOS
application protects against various technical risks, highlighting potential issues and
providing mitigation recommendations. Several observations were made on older
versions of the applications (as of August 2017), but all observations reported in this
version of the report apply to the version available mid November 2017.
Subject of the reviewwere the following repositories and commits:

• wire-ios-cryptobox commit 8e96cccb35b259187e590ca75e969cde7a6e2efd
• wire-ios-data-model commit 54302381324dfcd017154d4e59590905610d956e
• wire-ios-images commit ba105ea632251fcadd9f388ed319e8300164ace9
• wire-ios-message-strategy commit 22e7c4210e10acfc37963b3f2e2e108496a48190
• wire-ios-share-engine commit 1aba9b92931073d6050cecc18059863cf7ebe1d2
• wire-ios-sync-engine commit dd66a9fc2a056e320a2f62fca277cb233042147f
• wire-ios-system commit db0abf2504f16b4c2ae67e6feaa454d1c08d843b
• wire-ios-transport commit 967db8121677940aa59b101139b6731b61977a3c
• wire-ios-utilities commit 55f2bf21439d49b0018de18de71eb7c9a4658ba7

3

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.1 PRIVACY

This section summarizes our review of potential privacy leaks.

2.1.1 Logs Leaks

Logs written (in non-debug mode) do not leak critical credentials, but may leak
information on the user’s identity and its activity. For example, URLs are logged in error
messages in SharedObjectStore.swift:

1 zmLog.error("Failed to write to url: \(url), error: \(error), object: \(object)")
2 zmLog.error("Failed to read from url: \(url), error: \(error)")
3 zmLog.error("Failed to remove item at url: \(url), error: \(error)")

Listing 2.1: Logging

Furthermore, a user ID is logged in an error message in MissingClientsRequestStrateg
y.swift:

1 zmLog.error("\(userIdString) is not a valid UUID")

Listing 2.2: UserID Log

We recommend to reviewwhether such logs are really necessary.

2.1.2 Uninstall Leftovers

After uninstalling the application, all files under /private/var/mobile/Containers are
removed, as well the localytics folder in file sharing, and the application. One can
nonetheless find out thatWire used to be installed on the device, for example by looking
at iOS log files, where themention of “wearezeta” (Wire’s original codename) reveals the
previous installation of the app.

1 lockdownd.log: 0 : <CFString 0x13c603b60 [0x1a1785b68]>{contents = "com.wearezeta.zclient.ios"}
2 lockdownd.log.1: 0 : <CFString 0x14c60b360 [0x19e399b68]>{contents = "com.wearezeta.zclient.ios"}

FOR PUBLIC RELEASE Page 4 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

Listing 2.3: Uninstall Leftovers

However, this behavior cannot be modified by the application’s developers, as it is a
property of theOS.

2.1.3 Telemetry Data

Localytics is used to perform analytics based on user usage data. Users can opt out of this
tracking in the settings, but by default data such as the following is tracked:

• Type of connection (WiFi, 4G, etc.).
• The time, size, and type of assets exchanged (photo, audio, video, or other files).
• Calls duration and type (audio or video), etc.

Such data can obviously leak privacy-sensitive information, even if the data is shared
anonymously. Wiremigrated toMixpanel during the review. The reviewed code was still
using Localytics.

2.1.4 Crash Reports

HockeyApp is used to collect and crash reports from the application and share them
with Wire for QA purposes. These reports do not seem to include obvious sensitive
information. But stack traces and exceptionmessagesmay reveal potentially sensitive
information. Users can opt out of this tracking in the settings.

2.1.5 Screen Copies

The application does not attempt to protect against screenshots.
By default the iOS app switcher shows a preview of the currentWire screen, and does not
attempt to hide sensitive data such as conversations content. However, the application
lockmechanism can be activated to require authentication before using the app, and this
will hide the content of the application in the app switcher.

FOR PUBLIC RELEASE Page 5 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.1.6 FilesMetadata

Images sent over the app are stripped of their metadata such as for example geotags.
This applies to photos taken from the app or pictures from the image gallery. The code
performing the clean-up is in NSData+MediaMetadata.swift found in the wire-ios-ima
ge repository.
Location information is removed from videos, bothwhen sent as a file andwhen sent from
the image gallery. This seems to happen through transcoding of the files from the original
format (e.g. .mov) to compressedMP4 format.
Other files uploaded left unchanged. This includes office documents, audio files, PDFs,
and other documents.

2.1.7 URL Previews

By default, previews of URLs are generatedwhen anURL is entered, thereby generating a
DNS request and subsequent HTTP requests to fetch the preview content. This behavior
leaks the address of the sender to the URL’s servers, and reveals that the URLwas sent.
Wire has addressed this issue by allowing users to disabled URL previews under
Settings>Options.

2.1.8 iCloud Backups and iTunes Backups

Wire data is excluded from iCloud and iTunes backups by the application, as implemented
in FileBackupExcluder.swift.

2.1.9 Screen Snapshots

App switcher screen snapshots are stored under /private/var/mobile/Containers/D
ata/Applications/<appID>/Library/Caches/Snapshots/. However, any information
will appear on the snapshot, for example the password length and the clear text value
of the last password character on the login page. Such sensitive information should
be hidden, using the applicationDidEnterBackgroundmethod. Please see also section

FOR PUBLIC RELEASE Page 6 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.1.5 for further information.

2.1.10 Keyboard Caching

Keyboard caching is disabled for password fields (through .secureTextEntry=YES) as
well as for username and email fields (through .autocorrectionType=UITextAutocorr
ectionTypeNo). This ensures that sensitive data is not recorded by theOS.

2.2 CRYPTOGRAPHY

This section reports on themain cryptographic threats against the application.

2.2.1 PseudorandomGenerator

The PRNGused for cryptographic purposes relies on the iOS SDK’s SecRandomCopyBytes
using the default system secure PRNG (kSecRandomDefault), and properly checking for
success:

1 + (NSData *)secureRandomDataOfLength:(NSUInteger)length
2 {
3 NSMutableData *randomData = [NSMutableData dataWithLength:length];
4 int success = SecRandomCopyBytes(kSecRandomDefault, length, randomData.mutableBytes);
5 Require(success == 0);
6 return randomData;
7 }

Listing 2.4: PRNG

It would be slightly better practice, and clearer, to check for success == errSecSuccess

rather than success == 0, although the value of errSecSuccess is unlikely to change in
future versions of the SDK.
A non-cryptographic and insecure PRNG is used at several places (arc4random_uniform),
but none of these uses are cryptography- or security-related contexts. After reviewing all
these uses, we believe that the insecurity of arc4random_uniform does not impact the
security of the application.

FOR PUBLIC RELEASE Page 7 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

Wire has addressed these issues by checking for success == errSecSuccess1 and
adding a secureRandomNumber() method to generate random numbers with stronger
randomness2.

2.2.2 Cryptobox Integration and Usage

The wire-ios-cryptobox repository defines a Swift wrapper around the C version of
cryptobox, abstracting out the Proteus functionalities to simple encryption session and
encrypt/decrypt functions. We did not find security issues in this component.

2.2.3 Password Protection

TLS-encrypted passwords are hashed using scrypt by the server before being stored, as
per the security white paper using parameters N = 214,r = 8, p = 1, with a random 256-bit
salt, which we could verify in the server code at https://github.com/wireapp/wire-s
erver. This choice of password hashing provides strong protection against password
cracking attacks.

2.3 STORAGE

This section reports on the data stored on the device.

2.3.1 Keychain ItemsNot RemovedUnder Certain Conditions

iOS Keychain Services is only used to store the user’s authentication cookie, in kSecAttr
AccessibleAfterFirstUnlockmode (data is accessible between first unlock til reboot).
We suggest using the stronger restriction of kSecAttrAccessibleAfterFirstUnlockTh
isDeviceOnly, to make the Keychain data inaccessible on any other device.
Under certain conditions data from the Keychain might not be removed. The datamight
fail to be deleted without any visible error when calling the function deleteKeychainIt

1See https://github.com/wireapp/wire-ios-utilities/pull/30
2See https://github.com/wireapp/wire-ios-utilities/pull/32/

FOR PUBLIC RELEASE Page 8 of 25

https://github.com/wireapp/wire-server
https://github.com/wireapp/wire-server
https://github.com/wireapp/wire-ios-utilities/pull/30
https://github.com/wireapp/wire-ios-utilities/pull/32/

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

ems as defined in wire-ios-transport/Source/Authentication/ZMPersistentCooki
eStorage.m line 134:

1 - (void)deleteKeychainItems
2 {
3 dispatch_sync(isolationQueue(), ^{
4 NonPersistedPassword[self.cookieKey] = nil;
5

6 if (KeychainDisabled) {
7 return;
8 }
9

10 [ZMKeychain deleteAllKeychainItemsWithAccountName:self.accountName];
11 });
12 }

Listing 2.5: Delete Keychain

If this function is called while the value KeychainDisabled is set to true, data that might
reside inside the Keychain is never deleted. If this could happen depends on the usage of
this function and the time it is called.
We recommend to design functions and APIs in such away that theywill never silently
fail. This prevents silent error conditions that might prevent for example private data
from being deleted.
Wire has addressed the issue by removing the logic preventing the deletion of items3.

2.3.2 File System

Data stored in the file system is encrypted, meaning that data becomes available to
the app after the device boot once the user unlocked the device. The mode used is
NSFileProtectionCompleteUntilFirstUserAuthentication.
This is not the highest level of protection, but this has the advantage of allowingmessage
previews (otherwise the app would have to wait til the user unlocks the device). We
believe that the the loss in security is acceptable. Database files, cryptographic keys,
and other files are stored in a shared container under /private/var/mobile/Contai

3See https://github.com/wireapp/wire-ios-transport/pull/72

FOR PUBLIC RELEASE Page 9 of 25

https://github.com/wireapp/wire-ios-transport/pull/72

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

ners/Shared/AppGroup/<appgroupID>/. A shared container is used rather than a data
container in order to allow for share extensions, as discussed byWire in a blog post 4 .
In particular, messages are stored under com.wearezeta.zclient.ios/ in the store.wi
redatabase SQLite database, and prekeys (including the last resort key) and the identity
key are stored under otr/.
Screen snapshots (performed by iOS’ app switcher), crash reports, logs, and other files
are stored in a non-shared data container under /private/var/mobile/Containers/D
ata/Application/<appID>/.
These are reasonable design choices that prevent third-party applications from accessing
the application’s data.

2.3.3 PropertyList Files

Wedid not find sensitive information stored in unencrypted plist files.

2.4 NETWORK

The following issues are related to network security and transport encryption.

2.4.1 TLS Connection

NoHTTP content has been detected except when accessing HTTP links provided to the
application by external applications, as well as link previews. All traffic otherwise seems
to be safely encrypted and served using strong HTTPS components, in particular, traffic
to backend servers.
The App Transport Security (ATS) mechanism enforces TLS1.2 and safe cipher suites.
Note however that the configuration of the app sets the NSAppTransportSecurity

subkey NSAllowsArbitraryLoads to True, in order to allow for link previews. There is
thus no strict enforcement of HTTPS connections.

4https://medium.com/@wireapp/the-challenge-of-implementing-ios-share-extension-for
-end-to-end-encrypted-messenger-dd33b52b1e97

FOR PUBLIC RELEASE Page 10 of 25

https://medium.com/@wireapp/the-challenge-of-implementing-ios-share-extension-for-end-to-end-encrypted-messenger-dd33b52b1e97
https://medium.com/@wireapp/the-challenge-of-implementing-ios-share-extension-for-end-to-end-encrypted-messenger-dd33b52b1e97

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.4.2 Pinning

The application performs certificate pinning to enforce the usage of specific CA
certificates. Themost relevant source code files are, in the wire-ios-transport repository,
ZMServerTrust.m and ZMURLSession.m.
A DigiCert root certificate is hardcoded, pinned in order to validate certificates of hosts
matching the following conditions:

1 if ([host hasSuffix:@"prod-nginz-https.wire.com"]
2 || [host hasSuffix:@"prod-nginz-ssl.wire.com"]
3 || [host hasSuffix:@"prod-assets.wire.com"]
4 || [host hasSuffix:@"www.wire.com"]
5 || [host isEqualToString:@"wire.com"]) {
6 pinnedKeys = @[CFBridgingRelease(wirePublicKey())];
7 }

Listing 2.6: Pinning

These domains include the testing and production backend servers of the application.
However, the root certificate provided to validate the CDN server’s certificate only uses
a 1024-bit RSAmodulus, which is insufficient (we recommend 2048-bit or greater).
Wire has addressed the issue by directly pinning the 2048-bit public leaf key, the above
1024-bit CAwas only in an earlier version of the application thatwe reviewed inQ22017.
We still report it here for completeness.

2.5 PLATFORM

This section reports on general security risks related to the iPhone platform.

2.5.1 Permissions

Permissions of the app are defined in Wire-iOS/Wire-Info.plist, and include the
following: NSCameraUsageDescription, NSPhotoLibraryUsageDescription,
NSPhotoLibraryAddUsageDescription, NSContactsUsageDescription,
NSLocationWhenInUseUsageDescription, NSMicrophoneUsageDescription.

FOR PUBLIC RELEASE Page 11 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

These are expected permissions to grant access to the camera, photos, contacts list,
location, andmicrophone (for calls). All these permissions are expected, and none seems
abusive.

2.5.2 Jailbreak Detection

The app does not include any attempt of jailbreak detection or any anti-debug
mechanisms. Anti-debug protection is sometimes used to complicate reverse
engineering, but this isn’t a concern here since the application being fully open-source.

2.6 CODEQUALITY

This section reports on general issues regarding the code used in the application.

2.6.1 ExploitMitigation

The application binary has position-independent code (PIE) and implements reference
counting for objective-C code (in addition to Swift code). Stack protection is also enabled.
Thesemitigation are best practice and help to defend against memory corruption attacks.

2.6.2 Native Libraries

The following native libraries are directly used by Wire components of the iOS app:
libavs, libcryptobox, and libsodium. The first two libraries are provided byWire, though
libavs includes some third-party code. Both libraries were reviewed in a previous phase
(partially for AVS).
Libsodiumwas recently reviewed 5 and found to be “a secure, high-quality library that
meets its stated usability and efficiency goals.”

5https://www.privateinternetaccess.com/blog/2017/08/libsodium-v1-0-12-and-v1-0-13-s
ecurity-assessment/

FOR PUBLIC RELEASE Page 12 of 25

https://www.privateinternetaccess.com/blog/2017/08/libsodium-v1-0-12-and-v1-0-13-security-assessment/
https://www.privateinternetaccess.com/blog/2017/08/libsodium-v1-0-12-and-v1-0-13-security-assessment/

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.6.3 Dependencies

Third-party dependencies include frameworks and programs from the following GitHub
repositories:

1 if ([host hasSuffix:@"prod-nginz-https.wire.com"]
2 || [host hasSuffix:@"prod-nginz-ssl.wire.com"]
3 || [host hasSuffix:@"prod-assets.wire.com"]
4 || [host hasSuffix:@"www.wire.com"]
5 || [host isEqualToString:@"wire.com"]) {
6 pinnedKeys = @[CFBridgingRelease(wirePublicKey())];
7 }

Listing 2.7: Dependencies

Most of these are coded in Obj-C or Swift and won’t directly process user input, but some
represent a significant risk, for example ZipArchive’s C (de)compression code. ZipArchive
for example uses a relatively weak password-based key derivation (in pwd2key.c), but
this feature is not used in theWire app and therefore does not create a security risk.
Note however that we have not reviewed the security of all these dependencies.

FOR PUBLIC RELEASE Page 13 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.7 IMPLEMENTATION SECURITY ISSUES

Security issues that are resulting from implementation level vulnerabilities are described
here.
All of these issues have been addressed byWire, andwe reviewed the relevant patches
to confirm their effectiveness.

FOR PUBLIC RELEASE Page 14 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.7.1 WIRE-iOS-01: Hardcoded Sec-WebSocket-KeyHeader Value

Severity: LOW
CWE: 547

2.7.1.1 Description

A hardcoded value was found for theWebSocket request header Sec-WebSocket-Key.
The code defined in Source/PushChannel/ZMWebSocket.m line 119 6 defines value
dGhlIHNhbXBsZSBub25jZQ==:

1 if ([host hasSuffix:@"prod-nginz-https.wire.com"]
2 || [host hasSuffix:@"prod-nginz-ssl.wire.com"]
3 || [host hasSuffix:@"prod-assets.wire.com"]
4 || [host hasSuffix:@"www.wire.com"]
5 || [host isEqualToString:@"wire.com"]) {
6 pinnedKeys = @[CFBridgingRelease(wirePublicKey())];
7 }

Listing 2.8: HardcodedWebSocket Key

This value is a dummy value specified in RFC6455 7 . TheRFC! alsomakes it mandatory
to always use a random base64 encoded nonce for the header value:

The request MUST include a header field with the name
|Sec-WebSocket-Key|. The value of this header field MUST be a nonce
consisting of a randomly selected 16-byte value that has been
base64-encoded (see Section 4 of [RFC4648]). The nonceMUST be selected
randomly for each connection.

As per theWebSocket FAQ 8 , the Sec-WebSocket-Key header serves to ensure that “the
client can verify that they are indeed talking to a WebSocket server and not to some

6https://github.com/wireapp/wire-ios-transport/blob/967db8121677940aa59b101139b
6731b61977a3c/Source/PushChannel/ZMWebSocket.m#L119

7https://tools.ietf.org/html/rfc6455
8https://trac.ietf.org/trac/hybi/wiki/FAQ

FOR PUBLIC RELEASE Page 15 of 25

https://github.com/wireapp/wire-ios-transport/blob/967db8121677940aa59b101139b6731b61977a3c/Source/PushChannel/ZMWebSocket.m#L119
https://github.com/wireapp/wire-ios-transport/blob/967db8121677940aa59b101139b6731b61977a3c/Source/PushChannel/ZMWebSocket.m#L119
https://tools.ietf.org/html/rfc6455
https://trac.ietf.org/trac/hybi/wiki/FAQ

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

other kind of server.” In particular, it prevents a caching proxy from replaying a previous
WebSocket conversation.
Wire fixed 9 this issue by using a random nonce for each connection.

2.7.1.2 Solution Advice

A random nonce should be generated for each connection and request as specified by
RFC6544.

9https://github.com/wireapp/wire-ios-transport/pull/71

FOR PUBLIC RELEASE Page 16 of 25

https://github.com/wireapp/wire-ios-transport/pull/71

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.7.2 WIRE-iOS-02: Crash fromPreviews ofMalformed PDFs

Severity: MEDIUM
CWE: 248

2.7.2.1 Description

When loading certainmalformed PDFs to send to a peer, the appwill crash, allegedly in
file preview generation. For example, a file where wemodified the header to include the
following object crashed the app:

1 <<
2 /Pages 0 0 R
3 /Type /Catalog
4 /OutputIntents 0 0 R
5 /Metadata 0 0 R
6 >>

Listing 2.9:Malformed PDF

We have not investigated in details all the possible causes of a crash, but one possible
cause is a division by zero in the generatePreview() function in FilePreviewGenerator
.swift:

1 public func generatePreview(_ fileURL: URL, UTI: String, completion: @escaping (UIImage?) -> ()) {
2 var result: UIImage? = .none
3

4 ...
5

6 UIGraphicsBeginImageContext(thumbnailSize)
7 let pdfRef = CGPDFDocument(CGDataProvider(url: fileURL as CFURL)!)
8 let pageRef = pdfRef?.page(at: 1)
9

10 let contextRef = UIGraphicsGetCurrentContext()
11 contextRef?.setAllowsAntialiasing(true)
12

13 let cropBox = pageRef?.getBoxRect(CGPDFBox.cropBox)
14 let xScale = self.thumbnailSize.width / (cropBox?.size.width)!
15 let yScale = self.thumbnailSize.height / (cropBox?.size.height)!
16 let scaleToApply = xScale < yScale ? xScale : yScale
17

18 ...

FOR PUBLIC RELEASE Page 17 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

Listing 2.10: Preview

Note that there is a similar risk of division by zero when resizing images to thumbnail
format, in

1 func ScaleToAspectFitRectInRect(_ fit: CGRect, into: CGRect) -> CGFloat
2 {
3 // first try to match width
4 let s = into.width / fit.width
5 // if we scale the height to make the widths equal, does it still fit?
6 if (fit.height * s <= into.height) {
7 return s
8 }
9 // no, match height instead

10 return into.height / fit.height
11 }

Listing 2.11: Division By Zero

However, we failed to trigger a crash when sending a 0×0 bitmap file, so can’t confirm the
root cause. Checks for division by zero were introduced 10 byWire tomitigate this issue.

2.7.2.2 Solution Advice

Check the value of the width and height parameters to avoid a division by zero, catch
any exception that may be thrown by the CGPDFDocument instantiating. Then test using a
corpus of malformed PDF files.

10https://github.com/wireapp/wire-ios/pull/1414

FOR PUBLIC RELEASE Page 18 of 25

https://github.com/wireapp/wire-ios/pull/1414

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.7.3 WIRE-iOS-03: Potential Format String Vulnerabilities

Severity: MEDIUM
CWE: 134

2.7.3.1 Description

Potentially insecure usage of functions that process format strings was found in several
parts of the code.
In ZMUserSession+UserNotificationCategories.m themessage localizedStringWit
hFormat is usedwith value that might be controlled by an attacker:

1 - (UIMutableUserNotificationAction *)mutableAction:(NSString *)actionIdentifier
2 activationMode:(UIUserNotificationActivationMode)activationMode
3 localizedTitleKey:(NSString *)localizedTitleKey
4 {
5 UIMutableUserNotificationAction *action = [[UIMutableUserNotificationAction alloc] init];
6 action.identifier = actionIdentifier;
7 action.title = [NSString localizedStringWithFormat:ZMPushActionLocalizedString(localizedTitleKey),

nil];;,→
8 action.destructive = NO;
9 action.activationMode = activationMode;

10 action.authenticationRequired = false;
11 return action;
12 }
13 ...
14

15 - (UIUserNotificationAction *)replyActionDirectMessage:(BOOL)isCallContext
16 {
17 NSString *localizedTitleKey = isCallContext ? @"call.message" : @"message.reply";
18 UIMutableUserNotificationAction *action = [self

mutableBackgroundAction:ZMConversationDirectReplyAction localizedTitleKey:localizedTitleKey];,→
19 if ([action respondsToSelector:@selector(setBehavior:)]) { // This is only available in iOS9
20 action.behavior = UIUserNotificationActionBehaviorTextInput;
21 NSString *sendButtonTitle = [NSString

localizedStringWithFormat:ZMPushActionLocalizedString(@"message.reply.button.title"), nil];,→
22 action.parameters = @{UIUserNotificationTextInputActionButtonTitleKey: sendButtonTitle};
23 }
24 return action;
25 }

Listing 2.12: Format Strings

FOR PUBLIC RELEASE Page 19 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

Additionally the same function could be used in file ZMLocalNotificationLocalizatio
n.m in an insecure way:

1 static NSString *localizedStringWithKeyAndArguments(NSString *key, NSArray *arguments)
2 {
3 switch(arguments.count) {
4 case 0:
5 return [NSString localizedStringWithFormat:key, nil];
6 ...

Listing 2.13: localizedStringWithFormat Format String

In case an attacker can control a format string, this can lead to memory corruption,
information exposure, and other data representation problems.
In the given time it could not be fully verified if all of the functionsmentioned above are
processing external and potentially untrusted data. However, it is advised to create all
internal and external API functions in a safe way.
Wire fixed 11 this issue by adding additional checks and using a safer API.

2.7.3.2 Solution Advice

Format strings should always be specified explicitly for all calls to format string processing
functions. In general it is recommended to design all APIs and functional interfaces in
a safe to use way. This means that for example the contents of a potentially untrusted
string should not have any side effects or contain control data such as format strings.

11https://github.com/wireapp/wire-ios-sync-engine/pull/687

FOR PUBLIC RELEASE Page 20 of 25

https://github.com/wireapp/wire-ios-sync-engine/pull/687

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.7.4 WIRE-iOS-04: Message Nonce Used to Index Asset Cache

Severity: MEDIUM
CWE: 123

2.7.4.1 Description

A cache is used to store assets such as images or other data sent via encrypted Proteus
messages.
The cache is defined in file AssetCache.swift of repository wire-ios-data-model and
has several subclasses such as for example ImageAssetCache and FileAssetCache.
When data from a message is added to the cache the message nonce is usually used.
One example is file LinkPreviewAssetDownloadRequestStrategy.swift of repository
wire-ios-message-strategy:

1 func handleResponse(_ response: ZMTransportResponse!, forMessage message: ZMClientMessage) {
2 guard response.result == .success else { return }
3 let cache = managedObjectContext.zm_imageAssetCache
4

5 let linkPreview = message.genericMessage?.linkPreviews.first
6 guard let remote = linkPreview?.remote, let data = response.rawData else { return }
7 cache?.storeAssetData(message.nonce, format: .medium, encrypted: true, data: data)

Listing 2.14:Message Nonce

If themessage nonce could be controlled by an external party, unrelatedmessages from
different conversations could be stored in the cache. This could lead to confusion where
twomessages have the same nonce. This is of course an invalid state, however it should
be checked if this situation could happen. This is still subject of ongoing reviews.
Wire changed 12 the asset key generation in order to avoid collisions.
12https://github.com/wireapp/wire-ios-data-model/pull/436

FOR PUBLIC RELEASE Page 21 of 25

https://github.com/wireapp/wire-ios-data-model/pull/436

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.7.4.2 Solution Advice

To rule out any possibility of invalid cache behavior, it is recommended to add additional
unique data to the caching key. Also collisions in the insertion of cache entries should
cause an error - where possible.

FOR PUBLIC RELEASE Page 22 of 25

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

2.8 AUTHENTICATION

Working and secure authentication is one of themost important things for application
security. We reviewed the authentication process in heWire iOS app and describe our
findings in the following.

2.8.1 Tokens Content and Signature

For authentication to the Wire backend an access token is used. This access token is
retrieved using a long term cookie value that is stored by the app. The app stores this
value encrypted in the Keychain. It is encrypted by a random key using AES-256 in
CBCmode in extension zmEncryptPrefixingIVWithKey of NSData, defined in file wire-i
os-utilities/Source/NSData+ZMSCrypto.m. The key used for encryption is stored in
the user defaults database (NSUserDefaults) and generated randomly as defined in file
wire-ios-utilities/Source/NSUserDefaults+SharedUserDefaults.m, line 62:

1 //create new key
2 NSMutableData *newKey = [NSMutableData dataWithLength:kCCKeySizeAES256];
3 int success = SecRandomCopyBytes(kSecRandomDefault, newKey.length, (uint8_t *) newKey.mutableBytes);
4 Require(success == 0);
5 key = newKey;

Listing 2.15: Token Generation

In general the process of key generation is considered to be reasonably secure. The key
is also stored in the user defaults database of theWire application, which is local. Data
stored in the Keychain is therefore not accessible, even if the Keychain is extracted and
used on another device.

FOR PUBLIC RELEASE Page 23 of 25

3 About

Kudelski Security
route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs. Our
global reach and cyber solutions focus is reinforced by key international partnerships.
Kudelski Security is a division of Kudelski Group.
For more information, please visit https://www.kudelskisecurity.com.

X41D-Sec GmbH
Dennewartstr. 25-27
D-52068 Aachen
Germany

X41 D-Sec is an expert provider for application security services. Having extensive
industry experience and expertise in the area of information security, a strong core
security team of world class security experts enables X41 D-Sec to perform premium
security services.
Fields of expertise in the area of application security are security centered code reviews,

24

https://www.kudelskisecurity.com

Wire Security Review – Phase 2 – iOS Client Wire Swiss GmbH

binary reverse engineering and vulnerability discovery. Custom research and a IT security
consulting and support services are core competencies ofX41D-Sec.
For more information, please visit https://www.x41-dsec.de.

FOR PUBLIC RELEASE Page 25 of 25

https://www.x41-dsec.de

	Summary
	iOS Client Review
	Privacy
	Cryptography
	Storage
	Network
	Platform
	Code Quality
	Implementation Security Issues
	Authentication

	About

