
Source Code Audit on simplejson
for Open Source Technology Improvement Fund (OSTIF)

Final Report and Management Summary

2023-04-18

PUBLIC

X41 D-SEC GmbH
Krefelderstr. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

Revision Date Change Author(s)

1 2023-03-29 Final Report and Management
Summary

E. Sesterhenn, J. M., L. Gommans
2 2023-04-13 Public Release L. Gommans
3 2023-04-18 Minor clarifications L. Gommans

X41 D-Sec GmbH PUBLIC Page 1 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

Contents

1 Executive Summary 4

2 Introduction 6
2.1 Methodology . 6
2.2 Findings Overview . 8
2.3 Scope . 8
2.4 Coverage . 8
2.5 Recommended Further Tests . 10

3 Rating Methodology for Security Vulnerabilities 11
3.1 Common Weakness Enumeration . 12

4 Results 13
4.1 Findings . 13
4.2 Informational Notes . 20

5 About X41 D-Sec GmbH 30

A Fuzzing 32
A.1 Differential Fuzzing - python-afl . 32
A.2 Differential Fuzzing - pythonfuzz . 34
A.3 Differential Fuzzing - atheris . 35
A.4 Differential Fuzzing - pythonfuzz / orjson . 36

X41 D-Sec GmbH PUBLIC Page 2 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

Dashboard

Target
Customer Open Source Technology Improvement Fund (OSTIF)
Name simplejson
Type Python Library
Version Version 3.18.4
Engagement
Type Source Code Audit
Consultants 3: Eric Sesterhenn, J. M., and Luc Gommans
Engagement Effort 12 person-days, 2023-03-19 to 2023-03-24
Total issues found 3

0 1 2 3 4 5 6 7 8 9

None - 9

Low - 2

Medium - 1

High - 0

Critical - 0

CWE-20 (1)

CWE-772 (1)

CWE-400 (1)

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

X41 D-Sec GmbH PUBLIC Page 3 of 37

mailto:eric.sesterhenn@x41-dsec.de
mailto:j@x41-dsec.de
mailto:luc.gommans@x41-dsec.de

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

1 Executive Summary

In March 2023, X41 D-Sec GmbH performed a source code audit against simplejson to identify
vulnerabilities and weaknesses in the library.
A total of three vulnerabilities were discovered during the test by X41. Nonewere rated as having
a critical or high severity, one as medium, and two as low. Additionally, nine issues without a
direct security impact were identified.

Low - 2

Medium - 1

Figure 1.1: Issues and Severity
simplejson is a library to parse JSON data in Python. It has a similar interface to the built-in JSON
parser but supports older versions of Python including 2.5. Alongside a pure Python implemen-
tation, it also implements parts of the code in C for performance reasons. Vulnerabilities in the
library could allow an attacker to compromise software which uses JSON parsing for untrusted
input, as is not uncommon for data interfaces.

X41 D-Sec GmbH PUBLIC Page 4 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

In a source code audit, all information about the system is available. The test was performed by
three experienced security experts between 2023-03-19 and 2023-03-24.
The most severe issue discovered relates to a security fix for newer Python versions not being
implemented in simplejson. This allows an attacker to cause a denial of service by specifying
an uncommonly large number in the JSON data. Besides taking down networked services, one
scenario could be blocking a JSON-based updater to keep users on an old version of software for
which a patch was recently released. Because the software hangs instead of producing a clear
error message, the malicious nature of the situation can go unnoticed.
In addition, the Python implementation parses character formats which are not in compliance
with specification. This is due to the use of a general-purpose integer conversion function with-
out validating the input beforehand. An attacker might be able to exploit a situation where the
validator uses simplejson and passes all checks, but then crashes a back-end system due to the
invalid JSON data.
Among the informational notes, hardening could be applied by signing the code changes with a
developer’s private key. X41 had no insight into the GitHub account or organization settings and
thus recommends to review these in a separate audit. X41 furthermore recommends to apply
additional restrictions to untrusted input data.
Overall, the lack of high-severity issues being identified attests to the maturity of this project and
code base, but further hardening can be applied on a technical and general organizational level.

X41 D-Sec GmbH PUBLIC Page 5 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

2 Introduction

X41 reviewed the source code of simplejson which lets users serialize and deserialize JSON1
objects.
Simplejson is considered sensitive because often JSON data is considered to be untrusted input.
The library is used by various projects and any security issues will therefore affect a wide range
of systems. According to pypistats.org2, the daily number of daily downloads for the project is
over half a million, of which about 51000 are by systems with an old Python version.
Attackers could try to attack simplejson by using specially crafted JSON input in order to create
unexpected deserialized objects, which might then be used to attack software relying on sim-
plejson. Likewise, attackers could try to use specially crafted Python object attributes in order
to create unexpected serialized JSON, hoping to abuse software that relies on the serialization.
Furthermore, attackers could also try to cause failures in simplejson, causing unexpected errors
or rendering the software relying on simplejson unavailable. Additionally, attackers might try
to trigger memory safety violations in the C parts that allow for information leaks or memory
corruptions.

2.1 Methodology

The review was based on a source code review of the Python and C source code.
A manual approach for penetration testing and for code review is used by X41. This process is
supported by tools such as static code analyzers and industry standard web application security
tools3.
X41 adheres to established standards for source code reviewing and penetration testing. These

1 JavaScript Object Notation2 https://pypistats.org/packages/simplejson3 https://portswigger.net/burp

X41 D-Sec GmbH PUBLIC Page 6 of 37

https://pypistats.org/packages/simplejson
https://portswigger.net/burp

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

are in particular the CERT Secure Coding4 standards and the Study - A Penetration Testing Model5
of the German Federal Office for Information Security.

Ini�al Design
Workshop

Threat
Modelling

Code
Review

Documenta�on
GAP / Performance

Analysis
Fixing and
Mi�ga�on

Figure 2.1: Code Review Methodology

4 https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards5 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH PUBLIC Page 7 of 37

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

2.2 Findings Overview

DESCRIPTION SEVERITY ID REF
Invalid Handling of Broken Unicode Escape Sequences LOW SJ-PT-23-01 4.1.1
Missing Reference Count Decrease LOW SJ-PT-23-02 4.1.2
Quadratic Number Parsing MEDIUM SJ-PT-23-03 4.1.3
Broken Error Display NONE SJ-PT-23-100 4.2.1
Unused Import NONE SJ-PT-23-101 4.2.2
Unused Tuple-related Function Arguments NONE SJ-PT-23-102 4.2.3
Unused Function Argument _one_shot NONE SJ-PT-23-103 4.2.4
Type Hints Not Used NONE SJ-PT-23-104 4.2.5
Deprecated Python Versions Supported NONE SJ-PT-23-105 4.2.6
Unsigned Git Commits NONE SJ-PT-23-106 4.2.7
Infinity and NaN NONE SJ-PT-23-107 4.2.8
Support of Duplicate Key Names NONE SJ-PT-23-108 4.2.9

Table 2.1: Security-Relevant Findings

2.3 Scope

The auditwas performed against themost recent simplejson version, 3.18.46. The code contained
around 3000 lines of Python and 3000 lines of C code, including tests.

2.4 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.
The time allocated to X41 for this assessment was sufficient to yield a good coverage of the given
scope.
Besides a manual audit for out-of-bound memory accesses and logic issues the C code was in-
spected using Cppcheck7, Semgrep8 and analyzed by GCC9, LLVM10 and cpychecker11 analyzers.

6 https://github.com/simplejson/simplejson/releases/tag/v3.18.47 https://cppcheck.sourceforge.io/8 https://semgrep.dev/9 https://gcc.gnu.org/10 https://llvm.org/11 https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html

X41 D-Sec GmbH PUBLIC Page 8 of 37

https://github.com/simplejson/simplejson/releases/tag/v3.18.4
https://cppcheck.sourceforge.io/
https://semgrep.dev/
https://gcc.gnu.org/
https://llvm.org/
https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

Several differential fuzz harnesses were implemented to be able to identify parsing discrepan-
cies between the C and Python implementations (simplejson and orjson12) as well as memory
corruption issues in the C parts. The fuzz testing process is explained in detail in Appendix A.
Besides manual auditing for issues in the Python code, it has also been analyzed using the follow-
ing tools:

• Bandit13
• Pyre14
• Flake815, using the plugins

– dlint
– flake8-bugbear
– flake8-string-format
– flake8-unused-arguments
– flake8_encodings
– flake8_secure_coding_standard
– flake8_warnings
– hacking.core
– mccabe
– pycodestyle
– pyflakes
– warn-symbols

In addition, JSONTestSuite16 was used to check for possible JSON parsing issues.
Suggestions for next steps in securing this scope can be found in section 2.5.
12 https://github.com/ijl/orjson13 https://bandit.readthedocs.io/en/latest/14 https://pyre-check.org15 https://github.com/pycqa/flake816 https://github.com/nst/JSONTestSuite

X41 D-Sec GmbH PUBLIC Page 9 of 37

https://github.com/ijl/orjson
https://bandit.readthedocs.io/en/latest/
https://pyre-check.org
https://github.com/pycqa/flake8
https://github.com/nst/JSONTestSuite

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

2.5 Recommended Further Tests

X41 recommends to mitigate the issues described in this report. For issues with a direct security
impact, CVE17 IDs18 should be requested and customers be informed (e.g. via a changelog or a
special note for issues with higher severity) to ensure that they can make an informed decision
about upgrading or other possible mitigations.
Further tests could cover the security of the GitHub repository.

17 Common Vulnerabilities and Exposures18 Identifiers

X41 D-Sec GmbH PUBLIC Page 10 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for Open Source Technology Improvement
Fund (OSTIF) are beyond the scope of a penetration test which focuses entirely on technical
factors. Yet technical results from a penetration test may be an integral part of a general risk
assessment. A penetration test is based on a limited time frame and only covers vulnerabilities
and security issues which have been found in the given time, there is no claim for full coverage.
In total, five different ratings exist, which are as follows:

Severity Rating
None
Low

Medium
High
Critical

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.
Findingswith the rating ‘none’ are called informational findings and are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH PUBLIC Page 11 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

3.1 CommonWeakness Enumeration

The CWE1 is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.
CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration2 https://www.mitre.org

X41 D-Sec GmbH PUBLIC Page 12 of 37

https://cwe.mitre.org/
https://www.mitre.org

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 SJ-PT-23-01: Invalid Handling of Broken Unicode Escape Sequences

Severity: LOW
CWE: 20 – Improper Input Validation
Affected Component: simplejson/decoder.py:py_scanstring()

4.1.1.1 Description

The py_scanstring() function is used by the Python code to parse escaped strings. Among these
are \u strings, that are followed by four ASCII1 characters that describe a hexadecimal value.
When one of the characters is not a valid hexadecimal character (0-9, A-F) errors occur.

1 00000000 22 5c 75 20 45 44 44 22 |"\u EDD"|

Listing 4.1: Invalid Unicode Escape Sequence
1 American Standard Code for Information Interchange

X41 D-Sec GmbH PUBLIC Page 13 of 37

https://cwe.mitre.org/data/definitions/20.html

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

The space character (0x20) is invalid in this context, and the C code raises an exception when
parsing this.

1 Traceback (most recent call last):

2 File "/home/eric/code/fuzzing/xx.py", line 57, in <module>

3 fuzz()

4 File "/home/eric/code/fuzzing/xx.py", line 28, in fuzz

5 r2 = json2.loads(s)

6 ^^^^^^^^^^^^^^

7 File "/usr/local/lib/python3.11/dist-packages/simplejson2-3.18.4-py3.11-linux-x86_64.egg/simple c
json2/__init__.py", line 525, in

loads

↪→

↪→

8 return _default_decoder.decode(s)

9 ^^^^^^^^^^^^^^^^^^^^^^^^^^

10 File "/usr/local/lib/python3.11/dist-packages/simplejson2-3.18.4-py3.11-linux-x86_64.egg/simple c
json2/decoder.py", line 372, in

decode

↪→

↪→

11 obj, end = self.raw_decode(s)

12 ^^^^^^^^^^^^^^^^^^

13 File "/usr/local/lib/python3.11/dist-packages/simplejson2-3.18.4-py3.11-linux-x86_64.egg/simple c
json2/decoder.py", line 402, in

raw_decode

↪→

↪→

14 return self.scan_once(s, idx=_w(s, idx).end())

15 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

16 simplejson2.errors.JSONDecodeError: Invalid \uXXXX escape sequence: line 1 column 3 (char 2)

Listing 4.2: Exception in C Code

The Python code serializes this into the value 0edd. This happens because the Python code uses
int() to parse this value.

1 # Unicode escape sequence

2 msg = "Invalid \\uXXXX escape sequence"

3 esc = s[end + 1:end + 5]

4 escX = esc[1:2]

5 if len(esc) != 4 or escX == 'x' or escX == 'X':

6 raise JSONDecodeError(msg, s, end - 1)

7 try:

8 uni = int(esc, 16)

9 except ValueError:

10 raise JSONDecodeError(msg, s, end - 1)

Listing 4.3: Python Parsing for Unicode Escape Sequences

X41 D-Sec GmbH PUBLIC Page 14 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

The function int() ignores surrounding whitespace and underscores between digits2.
If x is not a number or if base is given, then x must be a string, bytes, or bytearray in-
stance representing an integer in radix base. Optionally, the string can be preceded by
+ or - (with no space in between), have leading zeros, be surrounded by whitespace,
and have single underscores interspersed between digits.

This can cause erroneous JSON to be parsed as valid and other implementations might either
reject these inputs or even serialize it to other values. This might lead to confusions about the
actual contents.

4.1.1.2 Solution Advice

X41 recommends to verify the digits in Unicode escape sequences in the Python code as well
and raise an exception if those are not valid.

2 https://docs.python.org/3/library/functions.html#int

X41 D-Sec GmbH PUBLIC Page 15 of 37

https://docs.python.org/3/library/functions.html#int

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.1.2 SJ-PT-23-02: Missing Reference Count Decrease

Severity: LOW
CWE: 772 –Missing Release of Resource after Effective Lifetime
Affected Component: /simplejson/_speedups.c:_match_number_str()

4.1.2.1 Description

In _speedups.c, the function _match_number_str() creates a variable numstr usingPyString_From-
StringAndSize()3 and might be a shared object. This requires Py_DECREF()4 to be called on the
object once it is no longer in use. This is done except when PyOS_string_to_double() fails.

1 /* copy the section we determined to be a number */

2 numstr = PyString_FromStringAndSize(&str[start], idx - start);

3 if (numstr == NULL)

4 return NULL;

5 if (is_float) {

6 /* parse as a float using a fast path if available, otherwise call user defined method */

7 if (s->parse_float != (PyObject *)&PyFloat_Type) {

8 rval = PyObject_CallOneArg(s->parse_float, numstr);

9 }

10 else {

11 /* rval = PyFloat_FromDouble(PyOS_ascii_atof(PyString_AS_STRING(numstr))); */

12 double d = PyOS_string_to_double(PyString_AS_STRING(numstr),

13 NULL, NULL);

14 if (d == -1.0 && PyErr_Occurred())

15 return NULL;

16 rval = PyFloat_FromDouble(d);

17 }

18 }

19 else {

20 /* parse as an int using a fast path if available, otherwise call user defined method */

21 if (s->parse_int != (PyObject *)&PyInt_Type) {

22 rval = PyObject_CallOneArg(s->parse_int, numstr);

23 }

24 else {

25 rval = PyInt_FromString(PyString_AS_STRING(numstr), NULL, 10);

26 }

27 }

28 Py_DECREF(numstr);

Listing 4.4: Missing Py_DECREF()
3 https://docs.python.org/2/c-api/string.html#c.PyString_FromStringAndSize4 https://docs.python.org/3/c-api/refcounting.html#c.Py_DECREF

X41 D-Sec GmbH PUBLIC Page 16 of 37

https://cwe.mitre.org/data/definitions/772.html
https://docs.python.org/2/c-api/string.html#c.PyString_FromStringAndSize
https://docs.python.org/3/c-api/refcounting.html#c.Py_DECREF

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

This causes a reference being held to the numvar string which is therefore not freed by the
garbage collector. This can cause a memory leak.
The code affected is only active for Python versions lower than 3.

4.1.2.2 Solution Advice

X41 recommends to add the missing call to Py_DECREF() into the error handling.

X41 D-Sec GmbH PUBLIC Page 17 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.1.3 SJ-PT-23-03: Quadratic Number Parsing

Severity: MEDIUM
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)
Affected Component: simplejson/decoder.py:356

4.1.3.1 Description

Parsing numbers in JSON strings takes a quadratic amount of time, that is, the time taken quadru-
ples when the input size doubles5. According6 to the documentation, ‘‘There exists no algorithm
that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2.’’ JSON does not support notations for bases other than ten, aside from
characters in strings where no more than four hexadecimals can be specified.

Number Size Time Taken
1 MiB 3.6 seconds2 MiB 14.3 seconds3 MiB 33.4 seconds4 MiB 59.4 seconds

Table 4.1: Number Size vs. Parsing Time on Debian Stable
Because JSON data is very often untrusted input, this could allow an attacker to hang a process
with a few megabytes of data. When done with enough parallelism, this often makes the service
deny further (legitimate) clients.
This bug is classified as CVE-2020-107357. The latest CPython versions limit the input to int() to
4300 digits by default, but also have faster number parsing: 3.4 seconds for a 4 MiB number in
CPython 3.12.0a6+ (commit 87be8d9522) on the same setup as used in table 4.1.

4.1.3.2 Solution Advice

For security fixeswhich are not backported to all Python versionswhich simplejson supports, X41
recommends to implement the security fixes in simplejson itself. In this case, simplejson could
check for the existence of the new method8 and implement its own limit if this is not available.
An example is shown in listing 4.5.

5 X41 previously parallel-discovered and reported this issue as TUF-CR-22-03 in a different scope:
https://www.x41-dsec.de/static/reports/X41-TUF-Audit-2022-Final-Report-PUBLIC.pdf6 https://docs.python.org/3/library/stdtypes.html#integer-string-conversion-length-limitation7 https://nvd.nist.gov/vuln/detail/CVE-2020-107358 https://docs.python.org/3/library/stdtypes.html#recommended-configuration

X41 D-Sec GmbH PUBLIC Page 18 of 37

https://cwe.mitre.org/data/definitions/400.html
https://www.x41-dsec.de/static/reports/X41-TUF-Audit-2022-Final-Report-PUBLIC.pdf
https://docs.python.org/3/library/stdtypes.html#integer-string-conversion-length-limitation
https://nvd.nist.gov/vuln/detail/CVE-2020-10735
https://docs.python.org/3/library/stdtypes.html#recommended-configuration

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

1 import sys

2

3 # Module-global constant for brevity; configurability may be desired

4 INT_MAX_STR_DIGITS = 4300

5

6 def bounded_int(x, base=10):

7 if (not hasattr(sys, "set_int_max_str_digits") and base & (base-1) == 0

8 and hasattr(x, '__len__') and len(x) > INT_MAX_STR_DIGITS):

9 raise ValueError("[...]" % (INT_MAX_STR_DIGITS, len(x)))

10

11 return int(x, base)

Listing 4.5: Limiting int() Input

X41 D-Sec GmbH PUBLIC Page 19 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

4.2.1 SJ-PT-23-100: Broken Error Display

Affected Component: _speedups.c

4.2.1.1 Description

When an exception is thrown by the C parsing code, the C code in some cases reports the errors
with an offset of one greater than the Python counterpart.

1 00000000 2d 2d |--|

Listing 4.6: Example File

This results in two different errors, where the Python code reports the error at char 0 and C at
char 1.

1 # Different errors:

2 e: Expecting value: line 1 column 1 (char 0)

3 e2: Expecting value: line 1 column 2 (char 1)

Listing 4.7: Off-By-One in C Error Display

The correct behavior seems to be the one of the Python implementation, which reports the start
of the non-matched string.

1 def _scan_once(string, idx):

2 errmsg = 'Expecting value'

3 ...

X41 D-Sec GmbH PUBLIC Page 20 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4 m = match_number(string, idx)

5 if m is not None:

6 ...

7 else:

8 raise JSONDecodeError(errmsg, string, idx)

Listing 4.8: Expecting Value Error

In some cases, this might even lead to different errors being reported when a file is parsed.
1 00000000 7b |{|

2

3 # Different errors:

4 e: Expecting property name enclosed in double quotes: line 1 column 2 (char 1)

5 e2: Expecting property name enclosed in double quotes or '}': line 1 column 2 (char 1)

Listing 4.9: Different Reported Errors

In other cases, the Python implementation is one character ahead of where the error is actually
happening.

1 00000000 22 18 64 |".d|

2

3 # Different errors:

4 e: Invalid control character 'd' at: line 1 column 3 (char 2)

5 e2: Invalid control character '\x18' at: line 1 column 2 (char 1)

Listing 4.10: Incorrect Character Reported in Error

4.2.1.2 Solution Advice

X41 recommends to unify the error reporting to achieve the samebehavior from theC andPython
implementation.

X41 D-Sec GmbH PUBLIC Page 21 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.2 SJ-PT-23-101: Unused Import

Affected Component: encoder.py

4.2.2.1 Description

unichr is imported from compat.py, but not used.

4.2.2.2 Solution Advice

X41 recommends to remove unused imports.

X41 D-Sec GmbH PUBLIC Page 22 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.3 SJ-PT-23-102: Unused Tuple-related Function Arguments

Affected Component: __init__.py

4.2.3.1 Description

The simplejson.load function signature defines the namedtuple_as_object=True and tuple_-

as_array=True arguments, but they are not used.

4.2.3.2 Solution Advice

X41 recommends to either use or remove the unused arguments.

X41 D-Sec GmbH PUBLIC Page 23 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.4 SJ-PT-23-103: Unused Function Argument _one_shot

Affected Component: decoder.py

4.2.4.1 Description

The simplejson.encoder._make_iterencode function signature defines the _one_shot argument,
but it is not used.

4.2.4.2 Solution Advice

X41 recommends to either use or remove the unused argument.

X41 D-Sec GmbH PUBLIC Page 24 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.5 SJ-PT-23-104: Type Hints Not Used

Affected Component: Python code

4.2.5.1 Description

Python Type Hints (PEP 4849) are not used in the Python code. They could aid in detecting
possible mistakes through the use of static analyzers, among others.

4.2.5.2 Solution Advice

X41 recommends to make use of Type Hints.

9 https://peps.python.org/pep-0484

X41 D-Sec GmbH PUBLIC Page 25 of 37

https://peps.python.org/pep-0484

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.6 SJ-PT-23-105: Deprecated Python Versions Supported

Affected Component: Python code

4.2.6.1 Description

simplejson supports Python version 2.5 and above. Because there are many differences between
Python 2 and Python 3, this requires many version checks and code branches, adding avoidable
complexity.
Python 2.7 has been deprecated formany years and reached EOL10 in 202011. The also-supported
2.5 version was last updated12 in 2006 and does not appear to ever have had official security sup-
port13.

4.2.6.2 Solution Advice

X41 recommends to plan and announce the removal of Python 2 support in simplejson.

10 End Of Life11 https://www.python.org/doc/sunset-python-2/12 https://peps.python.org/pep-0356/#release-schedule13 https://devguide.python.org/versions/

X41 D-Sec GmbH PUBLIC Page 26 of 37

https://www.python.org/doc/sunset-python-2/
https://peps.python.org/pep-0356/#release-schedule
https://devguide.python.org/versions/

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.7 SJ-PT-23-106: Unsigned Git Commits

Affected Component: https://github.com/simplejson/simplejson

4.2.7.1 Description

Commits and tags in the git repository are currently not signed, providing no certainty about the
authenticity of a commit.
In addition, any tag pushed to the repository is automatically published to the Python Package
Index (PyPI).
A breach of a maintainer account or of GitHub, or a vulnerability in the git protocol, might allow
an attacker to create unauthorized commits or tags in the repository.

4.2.7.2 Solution Advice

X41 recommends to make use of commit and tag signatures, to document the used signing keys,
and to add the signing keys to the relevant GitHub account14. In addition, X41 recommends
to require signed commits on the repository15, and to verify the commit and tag signatures in
GitHub Actions before publishing on PyPI.

14 https://docs.github.com/en/authentication/managing-commit-signature-verification/adding-a-gpg
-key-to-your-github-account15 https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/de
fining-the-mergeability-of-pull-requests/about-protected-branches#require-signed-commits

X41 D-Sec GmbH PUBLIC Page 27 of 37

https://docs.github.com/en/authentication/managing-commit-signature-verification/adding-a-gpg-key-to-your-github-account
https://docs.github.com/en/authentication/managing-commit-signature-verification/adding-a-gpg-key-to-your-github-account
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-signed-commits
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/about-protected-branches#require-signed-commits

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.8 SJ-PT-23-107: Infinity and NaN

Affected Component: Encoder and Decoder

4.2.8.1 Description

simplejson supports the serialization and deserialization of Infinity, -Infinity, and NaN. The
JSON specifications ECMA-404 (2nd Edition / December 2017)16 and RFC17 952918 both state
that numeric values that cannot be represented as sequences of digits ‘‘(such as Infinity and
NaN) are not permitted’’. While this can be disabled in simplejson using the allow_nan and
ignore_nan options, the default is not standards-compliant, which may be unexpected by users
of the software.

4.2.8.2 Solution Advice

X41 recommends to make the default standards-compliant.

16 https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf#
page=1217 Request for Comments18 https://www.rfc-editor.org/rfc/rfc8259#section-6

X41 D-Sec GmbH PUBLIC Page 28 of 37

https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf#page=12
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf#page=12
https://www.rfc-editor.org/rfc/rfc8259#section-6

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

4.2.9 SJ-PT-23-108: Support of Duplicate Key Names

Affected Component: Decoder

4.2.9.1 Description

RFC 952919 states that ‘‘names within an object SHOULD be unique’’ and further clarifies it
means that ‘‘all software implementations receiving that object will agree on the name-value
mappings‘‘. Given that Python dictionaries require unique keys and that duplicate names in JSON
are almost always the result of a mistake or an attempt of leveraging implementation differences
for attacks, duplicate names should not happen under normal circumstances. The data is likely
to be either erroneous or malicious.

4.2.9.2 Solution Advice

X41 recommends to make it the default behavior to raise an exception when duplicate names
are encountered.

19 https://www.rfc-editor.org/rfc/rfc8259#section-4

X41 D-Sec GmbH PUBLIC Page 29 of 37

https://www.rfc-editor.org/rfc/rfc8259#section-4

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Source code audit of the Git source code version control system1
• Review of the Mozilla Firefox updater2
• X41 Browser Security White Paper3
• Review of Cryptographic Protocols (Wire)4
• Identification of flaws in Fax Machines5,6
• Smartcard Stack Fuzzing7

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/2 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/3 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf4 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf5 https://www.x41-dsec.de/lab/blog/fax/6 https://2018.zeronights.ru/en/reports/zero-fax-given/7 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 30 of 37

https://x41-dsec.de
mailto:info@x41-dsec.de
https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

Acronyms

ASCII American Standard Code for Information Interchange 13
CVE Common Vulnerabilities and Exposures . 10
CWE Common Weakness Enumeration . 12
EOL End Of Life . 26
ID Identifier . 10
JSON JavaScript Object Notation . 6
RFC Request for Comments . 28

X41 D-Sec GmbH PUBLIC Page 31 of 37

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

A Fuzzing

This appendix describes the various fuzz tests performed by X41. The fuzz tests were performedagainst commit 463416cc9f9f7d177f963c31ac33ec8acf199e6e1.
Fuzz testing2 is a method for automated software testing. It is used to test for security vulnera-bilities and other implementation errors. Classically a fuzzer or fuzzing harness is a program thatgenerates input for other software with the hopes of triggering bugs. While classically used asa black box analysis method, fuzzing is nowadays often used with instrumentation and cover-age analysis techniques, either by compiling instrumented binaries or by using dynamic binaryinstrumentation techniques.
With all fuzzing approaches the goals for a successful fuzzing operation are:

• Speed: A high number of iterations per second
• Accuracy: a high number of relevant inputs that provide a high coverage of the target code
• High Signal-to-Noise Ratio: Fuzzing results should be valid bugs

The fuzz corpus was seeded by the files from the go-fuzz3 project and the JSONTestSuite4.
The code is already being fuzz-tested5 with a straight-forward fuzzer, but no differential testsseem to be performed.

A.1 Differential Fuzzing - python-afl

A fuzzer was developed to be able to identify discrepancies between the C and Python imple-mentation as well as memory violations in the C implementation.
Differential fuzzing can be described using the following steps:

1. Generate input
2. Run implementation A and B individually on the input generated in step 1.
3. Compare the results
4. Crash/Abort if the results differ
1 https://github.com/simplejson/simplejson/tree/463416cc9f9f7d177f963c31ac33ec8acf199e6e2 https://owasp.org/www-community/Fuzzing3 https://github.com/dvyukov/go-fuzz-corpus4 https://github.com/nst/JSONTestSuite5 https://github.com/simplejson/simplejson/pull/274

X41 D-Sec GmbH PUBLIC Page 32 of 37

https://github.com/simplejson/simplejson/tree/463416cc9f9f7d177f963c31ac33ec8acf199e6e
https://owasp.org/www-community/Fuzzing
https://github.com/dvyukov/go-fuzz-corpus
https://github.com/nst/JSONTestSuite
https://github.com/simplejson/simplejson/pull/274

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

The fuzzer relies on simplejson being installed twice (once as simplejson, once as simplejson2),with on version using plain Python and the other using the C speedups. The fuzz testing is per-formed using python-afl6.
1 # this expects simplejson to be installed twice, once with c

2 # and once without c speedups. We fuzz with the aim to see parsing

3 # discrepancies between the two implementations

4

5 import simplejson as json

6 import simplejson2 as json2

7 import afl

8 import sys

9 import os

10

11 def fuzz():

12 # setup and read data

13 e = ""

14 e2 = ""

15 r1 = None

16 r2 = None

17 sys.stdin.seek(0)

18 try:

19 s = sys.stdin.read()

20 except UnicodeDecodeError:

21 sys.exit(1)

22

23 if not s:

24 sys.exit(1)

25

26 # parse with c and non-c version

27 try:

28 r1 = json.loads(s)

29 except Exception as err:

30 e = str(err)

31 pass

32

33 try:

34 r2 = json2.loads(s)

35 except Exception as err:

36 e2 = str(err)

37 pass

38

39 # Check whether both implementations raised different errors

40 if e != e2:

41 print("# Different errors:")

42 print("e: " + e)

43 print("e2: " + e2)

44 print("r: " + json.dumps(r1))

45 print("r2: " + json.dumps(r2))

46 raise Exception("Different errors")

6 https://github.com/jwilk/python-afl

X41 D-Sec GmbH PUBLIC Page 33 of 37

https://github.com/jwilk/python-afl

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

47 else:

48 # check if input got serialized into different objects

49 if json.dumps(r1) != json.dumps(r2):

50 print("# Different objects:")

51 print("r: " + json.dumps(r1))

52 print("r2: " + json.dumps(r2))

53 raise Exception("Different objects")

54

55 def main():

56

57 while afl.loop(1000):

58 fuzz()

59

60 if __name__ == '__main__':

61 json.loads("{}")

62 json2.loads("{}")

63 while afl.loop():

64 main()

65

66 fuzz()

Listing A.1: Python-afl Harness

A.2 Differential Fuzzing - pythonfuzz

For additional coverage and different mutations, the fuzzer for python-afl was converted topythonfuzz7. For this fuzz test, the code was modified to ignore different errors and only raisean exception when an input is serialized into different objects. This was done to identify stringsthat might be handled differently by boths implementations and do not generate errors.
1 # this expects simplejson to be installed twice, once with c

2 # and once without c speedups. We fuzz with the aim to see parsing

3 # discrepancies between the two implementations

4

5 import simplejson as json

6 import simplejson2 as json2

7 from pythonfuzz.main import PythonFuzz

8

9 @PythonFuzz

10 def fuzz(buf):

11 # setup and read data

12 r1 = None

13 r2 = None

14

15 try:

16 s = buf.decode("ascii")

7 https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/pythonfuzz/

X41 D-Sec GmbH PUBLIC Page 34 of 37

https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/pythonfuzz/

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

17 except UnicodeDecodeError:

18 return

19

20 # parse with c and non-c version

21 try:

22 r1 = json.loads(s)

23 except Exception as err:

24 return

25

26 try:

27 r2 = json2.loads(s)

28 except Exception as err:

29 return

30

31 # check if input got serialized into different objects

32 if json.dumps(r1) != json.dumps(r2):

33 print("# Different objects:")

34 print("r: " + json.dumps(r1))

35 print("r2: " + json.dumps(r2))

36 raise Exception("Different objects")

37

38

39

40 if __name__ == '__main__':

41 json.loads("{}")

42 json2.loads("{}")

43 fuzz()

Listing A.2: Pythonfuzz Harness

A.3 Differential Fuzzing - atheris

For additional coverage and different mutations, the fuzzer for python-afl was converted toatheris8 as well which provided the most executions per second.
1 # this expects simplejson to be installed twice, once with c

2 # and once without c speedups. We fuzz with the aim to see parsing

3 # discrepancies between the two implementations

4

5 import atheris

6

7 with atheris.instrument_imports():

8 import simplejson as json

9 import simplejson2 as json2

10 import sys

8 https://pypi.org/project/atheris/

X41 D-Sec GmbH PUBLIC Page 35 of 37

https://pypi.org/project/atheris/

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

11

12 def TestOneInput(buf):

13 # setup and read data

14 r1 = None

15 r2 = None

16

17 try:

18 s = buf.decode("ascii")

19 except UnicodeDecodeError:

20 return

21

22 # parse with c and non-c version

23 try:

24 r1 = json.loads(s)

25 except (json.JSONDecodeError, RecursionError, ValueError) as err:

26 return

27

28 try:

29 r2 = json2.loads(s)

30 except (json2.JSONDecodeError, RecursionError, ValueError) as err:

31 return

32

33 # check if input got serialized into different objects

34 if json.dumps(r1) != json.dumps(r2):

35 print("# Different objects:")

36 print("r: " + json.dumps(r1))

37 print("r2: " + json.dumps(r2))

38 raise Exception("Different objects")

39

40 atheris.Setup(sys.argv, TestOneInput)

41 atheris.Fuzz()

Listing A.3: Atheris Harness

A.4 Differential Fuzzing - pythonfuzz / orjson

Using differential fuzzing to compare against other implementations such as orjson9 were notstraight forward, due to different indentation of the serialized JSON objects and the differentinteger precision. This was worked around by serializing and deserializing the data multiple times,which caused a loss of speed. Since a segfault was caused by the combination of atheris andorjson this fuzzer uses pythonfuzz as well.
1 import simplejson2 as json

2 import orjson as orjson

3 from pythonfuzz.main import PythonFuzz

4

9 https://github.com/ijl/orjson

X41 D-Sec GmbH PUBLIC Page 36 of 37

https://github.com/ijl/orjson

Source Code Audit on simplejson Open Source Technology Improvement Fund (OSTIF)

5 import sys

6 import os

7

8 @PythonFuzz

9 def fuzz(buf):

10 # setup and read data

11 r1 = None

12 r3 = None

13

14 try:

15 s = buf.decode("ascii")

16 except UnicodeDecodeError:

17 return

18

19 # parse with orjson and simplejson

20 try:

21 r1 = json.loads(s)

22 except (json.JSONDecodeError, RecursionError, ValueError) as err:

23 return

24

25 try:

26 r3 = orjson.loads(s)

27 except (orjson.JSONDecodeError, RecursionError, ValueError) as err:

28 return

29

30 # check if input got serialized into different objects

31 orj = orjson.dumps(r3)

32 org = orjson.dumps(orjson.loads(json.dumps(r1)))

33 if org != orj:

34 print("# Different objects:")

35 print("r : " + org)

36 print("r3: " + orj)

37 raise Exception("Different objects")

38

39

40

41 if __name__ == '__main__':

42 json.loads("{}")

43 orjson.loads("{}")

44 fuzz()

Listing A.4: Pythonfuzz orjson Harness

X41 D-Sec GmbH PUBLIC Page 37 of 37

	Executive Summary
	Introduction
	Methodology
	Findings Overview
	Scope
	Coverage
	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	SJ-PT-23-01
	SJ-PT-23-02
	SJ-PT-23-03

	Informational Notes
	SJ-PT-23-100
	SJ-PT-23-101
	SJ-PT-23-102
	SJ-PT-23-103
	SJ-PT-23-104
	SJ-PT-23-105
	SJ-PT-23-106
	SJ-PT-23-107
	SJ-PT-23-108

	About X41 D-Sec GmbH
	Fuzzing
	Differential Fuzzing - python-afl
	Differential Fuzzing - pythonfuzz
	Differential Fuzzing - atheris
	Differential Fuzzing - pythonfuzz / orjson

