
Code Audit on Ruby on Rails
for the Open Source Technology Improvement Fund

Final Report (Not for Release)

2025-06-11
PUBLIC

X41 D-Sec GmbH
Soerser Weg 20
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

In cooperation with GitLab Inc.
Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

Revision Date Change Author(s)

1 2025-03-25 Final Report and Management
Summary

E. Sesterhenn, J. Schneeweisz, R.
Femmer, M. Vervier

2 2024-12-23 Initial Threat Model and Test
Plan

E. Sesterhenn, J. Schneeweisz, R.
Femmer, M. Vervier

3 2025-06-11 Public Report Release E. Sesterhenn, J. Schneeweisz, R.
Femmer, M. Vervier

X41 D-Sec GmbH PUBLIC Page 1 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

Contents

1 Executive Summary 4

2 Introduction 6
2.1 Methodology . 6
2.2 Scope . 7
2.3 Recommended Further Tests . 8

3 Threat Model and Test Plan 9
3.1 System Overview . 9
3.2 Assets Identification . 11
3.3 Entry Points . 11
3.4 Trust Boundaries . 13
3.5 Threat Categories . 15
3.6 Specific Ruby on Rails Vulnerabilities . 16
3.7 Conclusions and Proposed Test Plan . 16

4 Rating Methodology for Security Vulnerabilities 18

5 Results 20
5.1 Findings . 20
5.2 Informational Notes . 29

6 About X41 D-Sec GmbH 37

A Appendix 40
A.1 URL Parameter Fuzzer . 40

X41 D-Sec GmbH PUBLIC Page 2 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

Dashboard

Target
Customer Open Source Technology Improvement Fund
Name Ruby on Rails
Type Web Framework
Version v8.0.1
Engagement
Type Gray Box Penetration Test
Consultants 5: Eric Sesterhenn, Joern Schneeweisz, J.M., Markus Vervier,

and Robert Femmer
Engagement Effort 50 person-days, 2024-12-09 to 2025-03-25
Total issues found 7

0 1 2 3 4 5 6

None - 6

Low - 6

Medium - 0

High - 1

Critical - 0

CWE-453 (2)

CWE-94 (1)

CWE-1395 (1)

CWE-657 (1)

CWE-502 (1)

CWE-285 (1)

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

X41 D-Sec GmbH PUBLIC Page 3 of 42

mailto:eric.sesterhenn@x41-dsec.de
mailto:j@x41-dsec.de
mailto:markus.vervier@x41-dsec.de

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

1 Executive Summary

The security review of Ruby on Rails v8.0.1 performed by X41 between December 2024 and
March 2025 has identified several areas where improvements can be made to ensure robust
security. The test was organized by the Open Source Technology -Improvement Fund1. GitLab2
directly supported the assessment by sponsoring participation of the GitLab Security Research
Team3 in the audit.
A total of seven vulnerabilities were discovered during the test by X41. None were rated as
having a critical severity, one as high, none as medium, and six as low. Additionally, six issues
without a direct security impact were identified.

Low - 6

High - 1

Figure 1.1: Issues and Severity
1https://ostif.org2https://about.gitlab.com3https://handbook.gitlab.com/handbook/security/product-security/security-platforms-architectur

e/security-research/

X41 D-Sec GmbH PUBLIC Page 4 of 42

https://ostif.org
https://about.gitlab.com
https://handbook.gitlab.com/handbook/security/product-security/security-platforms-architecture/security-research/
https://handbook.gitlab.com/handbook/security/product-security/security-platforms-architecture/security-research/

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

The test was performed by five experienced security experts between 2024-12-09 and 2025-
03-25.
During the security code review, various types of attacks were investigated, including authen-
tication bypasses, authorization flaws, cryptographic issues, information exposure, privilege es-
calation, client-side injections, SSRF, race conditions, insecure file operations, and concurrency
issues.
It shows that over the recent years, the maturity of the Rails code base has grown significantly in
regard to security. Issues identified include the lack of comprehensive deauthentication mecha-
nisms in ActionCable, potential parsing vulnerabilities for different formats like JSON and HTTP,
and logical bugs in ActiveStorage that could lead to dangerous file accesses. Additionally, the
review highlights third-party dependency handling as an area requiring further investigation due
to its critical role in security.
To address these findings, X41 recommends performing follow-up tests such as code audits of
components used (like the mail library) and assessing popular Gems within the Ruby on Rails
ecosystem for potential vulnerabilities that could impact multiple deployments.
The security audit has identified several areas of improvement to enhance the security posture of
Ruby on Rails, focusing on components such as ActionMailer, ActionMailbox, and ActiveStorage.
The recommendations provided will assist in mitigating identified vulnerabilities and ensuring
robust security practices are implemented.

X41 D-Sec GmbH PUBLIC Page 5 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

2 Introduction

The review of Ruby on Rails by X41 aims to identify security vulnerabilities in the source code
via a manual review.
The threat model described in the chapter 3 forms the basis of this review and the ratings of iden-
tified issues. It is based on the assumptions of typical attackers and their capabilities in common
usage scenarios.

2.1 Methodology

The review is conducted as a manual code review. X41 adheres to established standards for
source code reviewing and penetration testing. These are in particular the CERT Secure Coding1
standards and the Study - A Penetration Testing Model2 of the German Federal Office for Informa-
tion Security.
The workflow of source code reviews is shown in figure 2.1. In an initial, informal workshop
regarding the design and architecture of the application, a basic threat model is created. This is
used to explore the source code for interesting attack surfaces and code paths. These are then
audited manually and with the help of tools such as static analyzers and fuzzers. The identified
issues are documented and can be used in a GAP analysis to highlight changes to previous audits.

1https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards2https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH PUBLIC Page 6 of 42

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

Ini�al Design
Workshop

Threat
Modelling

Code
Review

Documenta�on
GAP / Performance

Analysis
Fixing and
Mi�ga�on

Figure 2.1: Code Review Methodology

2.2 Scope

The source code in scope for this audit was Ruby on Rails v8.0.13 which correlates to Git commit
cf6ff17e9a3c6c1139040b519a341f55f0be16cf4.
A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.
The ActionMailer and ActionMailbox components were inspected for logic and implementation
bugs.
Semgrep5 was used for an initial static analysis of the source code.

• Cookies were checked for Secure and HttpOnly attributes.
• Parsing issues for different formats (JSON, HTTP).
• WebSocket hijacking was investigated using dynamic and static analysis.
• The code was checked for URL6 parsing discrepancies

3https://github.com/rails/rails/releases/tag/v8.0.14https://github.com/rails/rails/tree/cf6ff17e9a3c6c1139040b519a341f55f0be16cf5https://semgrep.dev/index.html6Uniform Resource Locator

X41 D-Sec GmbH PUBLIC Page 7 of 42

https://github.com/rails/rails/releases/tag/v8.0.1
https://github.com/rails/rails/tree/cf6ff17e9a3c6c1139040b519a341f55f0be16cf
https://semgrep.dev/index.html

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

The ActionCable code has been reviewed with a focus on authentication and deauthentication.
The framework has been inspected for availability and default values of web security features
such as CSP7, SRI8, HSTS9, Referrer-Policy, X-Content-Type-Options, X-Frame-Options, and
cookie attributes such as HttpOnly, Secure, and SameSite. A special focus was put on parameter
handling in regard to type tampering, bypassing protection mechanisms, overwriting path and
query parameters, and inconsistencies between different rails versions.
The ActiveStorage module was reviewed for dangerous file accesses and logic bugs. Due to
the potent attack surface, the dependencies handling image parsing and transformations were
audited for security issues. ActiveRecordwas audited for undocumented potential SQL injections
and design issues. Third party dependencies were checked for obvious security vulnerabilities
and potential supply chain issues.
Suggestions for next steps in securing this scope can be found in section 2.3.

2.3 Recommended Further Tests

X41 recommends to perform code audits of the components used, such as the mail10 library.
Given that many of the security features of the Ruby on Rails framework depend on the proper
and secure usage framework functionality, further audits could be conducted on Gems that are
popular within the Ruby on Rails ecosystem, where identified vulnerabilities would impact a wide
array of Ruby on Rails deployments.

7Content Security Policy8Subresource Integrity9HTTP Strict Transport Security10https://github.com/mikel/mail/

X41 D-Sec GmbH PUBLIC Page 8 of 42

https://github.com/mikel/mail/

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

3 Threat Model and Test Plan

A threat model is a framework that seeks to identify the trust boundaries inherent to a software
system. This offers a systematic approach to arrive at a list of attack surfaces, which can be
translated into the components that may be targeted by attackers. It describes the outcome of a
successful attack and common vulnerabilities, whichmay enable an attack. From this information,
a test plan can be developed that covers a section or all of the identified attack surfaces. The test
plan can be used to establish coverage as a metric to be taken into account by further security
review in the future. Last but not least, the threat model can be employed to decide whether a
bug is to be considered security sensitive.
Ruby on Rails is a web application framework, therefore any vulnerability identified within the
framework potentially exposes the application using it.
This test plan and threat model cover the generic aspects of a (web) application framework ap-
plied to the specifics of Ruby and Ruby on Rails.

3.1 System Overview

This section provides an overview of the Ruby on Rails framework, in particular its architecture,
key components, and typical deployment scenarios. Understanding these aspects is crucial for
identifying potential technical security risks and developing an effective test plan.

3.1.1 Ruby on Rails Architecture and Key Components

Ruby on Rails follows the MVC12 design pattern. The framework is split up into several parts for
different aspects of the application.

1Model-View-Controller2https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

X41 D-Sec GmbH PUBLIC Page 9 of 42

https://rubyonrails.org/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

• ActionCable - WebSocket integration
• ActionMailbox - Inbound email handling
• ActionMailer - Email sending
• ActionPack - Request lifecycle
• ActionText - Rich text handling
• ActionView - View layer
• ActiveJob - Background processing
• ActiveModel - Model layer
• ActiveRecord - ORM3 Database layer
• ActiveStorage - File upload and storage handling
• ActiveSupport - Utility classes

3.1.2 Typical Deployment Scenarios

Ruby on Rails applications can be deployed in various ways, each with its own security consider-
ations.

1. Single-server deployment:
• Rails application server (e.g., Puma, Unicorn)
• Database server (e.g., PostgreSQL, MySQL)
• Web server (e.g., Nginx, Apache) as a reverse proxy

This is the simplest deployment scenario, suitable for small to medium-sized applications.
All components run on a single server, which can be easier to manage but may have limita-
tions in terms of scalability and fault tolerance.

2. Multi-server deployment:
• Load balancer (e.g., HAProxy, Nginx)
• Multiple application servers
• Database server (possibly with replication)
• Caching server (e.g., Redis, Memcached)
• Background job workers

This setup is more complex but offers better scalability and reliability. It distributes the load
across multiple servers and introduces redundancy, making the application more resilient
to failures.

3. Cloud-based deployment:
3Object-Relational Mapping

X41 D-Sec GmbH PUBLIC Page 10 of 42

https://github.com/rails/rails/tree/main/actioncable
https://github.com/rails/rails/tree/main/actionmailbox
https://github.com/rails/rails/tree/main/actionmailer
https://github.com/rails/rails/tree/main/actionpack
https://github.com/rails/rails/tree/main/actiontext
https://github.com/rails/rails/tree/main/actionview
https://github.com/rails/rails/tree/main/activejob
https://github.com/rails/rails/tree/main/activemodel
https://github.com/rails/rails/tree/main/activerecord
https://github.com/rails/rails/tree/main/activestorage
https://github.com/rails/rails/tree/main/activesupport

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

• Platform as a Service (PaaS4) providers (e.g. Heroku, AWS5 Elastic Beanstalk)
• Containerized deployment (e.g. Docker with Kubernetes)
• Serverless deployment (e.g. AWS Lambda with API6 Gateway)

Cloud-based deployments offer flexibility, scalability, and often come with built-in security
features. However, they require careful configuration to ensure proper security measures
are in place, especially when dealing with sensitive data.

4. Microservices architecture:
• Multiple applications as separate services
• API Gateway
• Service discovery and communication layer

This advanced architecture breaks down the application into smaller, independent services.
While it offers great flexibility and scalability, it also introduces complexity in terms of ser-
vice communication and security management.

Each deployment scenario has its own security implications and requires specific considerations
in terms of network security, access control, and data protection.

3.2 Assets Identification

• Source code
• Database
• User data
• Configuration files
• Session information
• Trust relationship with other entities
• Browser of users

3.3 Entry Points

1. Web interface:
• HTTP7/HTTPS8 requests to the application’s endpoints

4Platform as a Service5Amazon Web Services6Application Programming Interface7HyperText Transfer Protocol8HyperText Transfer Protocol Secure

X41 D-Sec GmbH PUBLIC Page 11 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

• User-facing forms and interactive elements
• Authentication and login pages
• File upload interfaces

2. API endpoints:
• RESTful API routes
• GraphQL endpoints (if implemented)
• WebSocket connections (via ActionCable)
• Webhook receivers

3. Database connections:
• ActiveRecord ORM interactions
• Raw SQL9 queries (if used)
• Database migration scripts

4. File system access:
• File uploads and downloads (possibly using ActiveStorage)
• Log file writing and reading
• Temporary file creation and manipulation

5. External service integrations:
• Third-party API calls
• OAuth10 authentication providers
• Payment gateways
• Email services (via ActionMailer)
• Background job processors (using ActiveJob)

6. Command-line interface:
• Rails console
• Rake tasks
• Custom scripts using the Rails environment

7. Configuration files:
• Environment variables
• Database configuration files
• Initializers and application settings

8. Inbound email handling:
9Structured Query Language10Open Authorization

X41 D-Sec GmbH PUBLIC Page 12 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

• Email processing via ActionMailbox
9. View rendering:

• Template rendering (via ActionView)
• JavaScript execution in the browser
• CSS11 styling and processing

10. Caching mechanisms:
• Page caching
• Fragment caching
• Low-level caching

Each of these entry points represents a potential avenue for attackers to interact with the Ruby
on Rails application. It’s crucial to implement proper security measures, input validation, and
access controls at each of these points to maintain the integrity of the trust boundaries identified
in the threat model.

3.4 Trust Boundaries

In this section, trust boundaries of a typical Ruby on Rails application are identified and defined.
These trust boundaries are a fundamental part of the threat model and guide the efforts of secur-
ing the framework. A bug is considered a security vulnerability if and only if it violates one of the
trust boundaries of the respective threat model. The section concludes with a list of bug classes
that generally violate one or more trust boundaries.

3.4.1 Client-Server Boundary

Applications written using Ruby on Rails are meant to serve resources using the HTTP protocol
family to users connecting over a remote network. The interaction typically involves the user
sending a request for some resource and the application generating a reply and sending it back
to the user.
In the context of this threat model, the interface between the user (client) and the application
(server) constitutes a trust boundary. A violation of this boundary means that the user can craft
a request or a series of requests, which causes unintended consequences for the state of the
server, for example returning data that the user is not authorized to receive or executing code
that the user is not authorized to execute, possibly code that the user supplied themselves.

11Cascading Style Sheets

X41 D-Sec GmbH PUBLIC Page 13 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

An example of a vulnerability undermining this trust boundary is deserialization attacks, where
user-supplied data is deserialized into functional Ruby classes, including method definitions that
are executed. Another example is a command injection vulnerability, where the user is able to
craft input in a way that it is used to execute commands in a shell on the server.

3.4.2 Application-Database Boundary

Applicationswritten using Ruby onRails (and other similar frameworks) rely on a backend database
for persistent storage of data. Typically, these databases are provided by some implementation
of a relational database, which can be interacted with via SQL. The ORM database layer provides
an abstraction over the variants of compatible database backends. It enables the programmer to
let the row of a table in the database be represented by an instance of a Ruby class. The abstrac-
tion layer’s task is to map the instances of the Ruby classes to the internal representation in the
specific SQL database and back. Further, it handles the network connection and authentication
with the database.
In the context of this threat model, the interfaces between objects backed by the same database
that require differing levels of authorization, constitute trust boundaries. A violation of this trust
boundary means that the user can craft a request or a series of requests, which causes unin-
tended consequences in the state of the database, for example returning data that the user is not
authorized to receive.
A prominent bug class that violates this trust boundary is SQL injection, where a user of the
application can inject SQL statements into data supplied to the application in a way that the
application executes the SQL statements on the backend database.

3.4.3 Application-OS Boundary

Ruby on Rails applications can interact with the operating system and local file system. This
might lead to files being created with insecure permissions or race conditions when reading data
from files. The Ruby on Rails framework should ensure that these kinds of security issues cannot
happen easily.

3.4.4 Application-Network Boundary

Ruby on Rails applications can interact with other network applications such as microservices
available via REST12 APIs. These interactions need to be authorized, encrypted, and integrity

12Representational State Transfer

X41 D-Sec GmbH PUBLIC Page 14 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

protected. Additionally, attack classes such as server-side request forgery (SSRF13) should be
prevented.

3.4.5 Inter-Component Boundaries within the Application

Applications written using Ruby on Rails often desire to authenticate and authorize a user, such
that the application is able to determine which information a user is entitled to receive, or which
functions a user is allowed to execute. Ruby on Rails provides various APIs around handling ses-
sions, encryption, and verification. The APIs performing these tasks constitute a trust boundary
within this threat model. A Ruby on Rails application shall not authenticate and/or authorize a
user to a level of access that they are not entitled to.
Examples of violations to this trust boundary are broadly distributed. Cross-Site Scripting (XSS14)
and Cross-Site Request Forgery (CSRF15) often depend on the concrete application logic, but
may also be a vulnerability in the framework.
Vulnerabilities in the session management often stem from errors in the framework and miscon-
figurations are usually an error by the developer of the application.

3.4.6 Ruby

With Rails being developed in Ruby, security issues in Ruby might affect Rails as well. Ruby
functions might be used in an insecure manner or contain vulnerable code paths. These might be
in the Ruby code itself or the Ruby C extensions.

3.5 Threat Categories

• Injection attacks (SQL, command, etc.)
• Cross-Site Scripting (XSS)
• Cross-Site Request Forgery (CSRF)
• Authentication and session management vulnerabilities
• Insecure Direct Object References
• Security misconfiguration
• Sensitive data exposure
• Broken access control

13Server-Side Request Forgery14Cross-site Scripting15Cross-Site Request Forgery

X41 D-Sec GmbH PUBLIC Page 15 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

• Insufficient logging and monitoring
• Race conditions
• Denial-of-service issues

3.6 Specific Ruby on Rails Vulnerabilities

• Mass assignment
• Remote code execution via YAML16 deserialization
• Unsafe reflection methods
• Template injection
• Insecure defaults in older versions

3.7 Conclusions and Proposed Test Plan

Due to the size of Ruby on Rails, it will not be possible to cover all the tests and tasks in the
following test plan. The tests performedwill be covered in the final report along with suggestions
on what to focus on in future audits.

3.7.1 Source Code Auditing

The source code will be audited to various bug classes, such as those highlighted by the OWASP
Top 10 2024. Furthermore, the threats listed in section Threat Categorieswill be inspected where
sensible. Additionally, security issues specific to Ruby on Rails will be audited for. These include,
but are not limited to:

• Mass assignment issues
• Serialization and Deserialization issues
• Unsafe reflection methods
• Template injection
• Insecure defaults

16YAML Ain’t Markup Language

X41 D-Sec GmbH PUBLIC Page 16 of 42

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

3.7.2 Business Logic

The various Action-components should be audited for security issues stemming from logic bugs
related to the component. These bugs are tightly related to the task of the component. For
example, the Action Mailbox will be inspected on how it handles maliciously formatted emails.
This might include the handling of malformed headers, headers missing or occurring multiple
times, a flood of emails, or the very slow receiving of email data.

3.7.3 Deployment Scenarios

The various deployment scenarios should be compared and the implications on the security of
deployments inspected. Configuration options should be audited for easy-to-make mistakes that
might affect a subset of the deployment scenarios.

3.7.4 Boundary Trusts

Various boundarieswere identified in the Ruby onRails framework. Each side of these boundaries
will have assumptions about the other side embedded in the code base. When these assumptions
are violated, there might be ways to abuse these violations in a security-relevant manner. There-
fore, these assumptions and interactions should be audited.

3.7.5 Security Mechanisms

Security mechanisms implemented by Ruby on Rails should be audited for security bugs which
might allow attackers to circumvent these protections. Additionally, they will be inspected for
other forms of abuse, e.g. denial-of-service attacks that are only possible due to these mecha-
nisms.

3.7.6 Improve Tooling

The following actions should be taken to improve the security-relevant tooling of the Ruby on
Rails codebase:

• Inspect and increase ruzzer fuzzing coverage for Ruby C extensions used
• Attempt OSS-Fuzz integration
• Inspect current and create new SAST rules

X41 D-Sec GmbH PUBLIC Page 17 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

4 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for Open Source Technology Improvement
Fund are beyond the scope of a penetration test which focuses entirely on technical factors. Yet
technical results from a penetration test may be an integral part of a general risk assessment.
A penetration test is based on a limited time frame and only covers vulnerabilities and security
issues which have been found in the given time, there is no claim for full coverage.
In total, five different ratings exist, which are as follows:

Severity Rating
None
Low

Medium
High
Critical

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.
Findingswith the rating ‘none’ are called informational findings and are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH PUBLIC Page 18 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

CommonWeakness Enumeration

The CWE1 is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.
CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information
can be found on the CWE website at https://cwe.mitre.org/.

1Common Weakness Enumeration2https://www.mitre.org

X41 D-Sec GmbH PUBLIC Page 19 of 42

https://cwe.mitre.org/
https://www.mitre.org

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 5.1. Additionally, findings without a direct security impact are documented in Section 5.2.

5.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

5.1.1 ROR-CR-23-01: Potential Remote Code Execution in image_processing
Gem

Severity: HIGH
CWE: 94 – Improper Control of Generation of Code (’Code Injection’)
Affected Component: activestorage/lib/active_storage/transformers/image_processing_transformer.rb

5.1.1.1 Description

Ruby on Rails exposes the image_processing Gem as part of ActiveStorage, which enables app
developers to perform basic image processing. The fix for a vulnerability reported on March 1st,
2022 1, is incomplete. If a vulnerable Rails app exposes the type of transformations to be applied
to an image to a remote attacker, theymay execute arbitrary commands in the context of the Rails
app. Note that when MiniMagick is used, Ruby on Rails performs validation of transformations,
which matches the method against a white list supported_image_processing_methods. The
required method send is not among them, so there is seemingly no way to exploit this issue with

1https://github.com/janko/image_processing/security/advisories/GHSA-cxf7-qrc5-9446

X41 D-Sec GmbH PUBLIC Page 20 of 42

https://cwe.mitre.org/data/definitions/94.html
https://github.com/janko/image_processing/security/advisories/GHSA-cxf7-qrc5-9446

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

MiniMagick. However, if the processing variant is VIPS, transformations are not validated. The
underlying issue is that the fix attempts to constrain methods to be called to public methods,
which would exclude sensitive methods like system(), spawn(), and eval(). However, the send()
method itself is public and thus not excluded. Therefore it is possible to execute code if the
processor can be invoked in a way as shown in listing 5.1:

1 ImageProcessing::Vips.source(@image).apply(send: ["spawn", "touch foo.txt"])

Listing 5.1: Vulnerable Library Call

Other paths to the vulnerable methods in the gem image_processing exist, but are not called
by Ruby on Rails in a way that would make them exploitable due to an app developer exposing
them.

5.1.1.2 Solution Advice

X41 recommends applying white lists unconditionally.

X41 D-Sec GmbH PUBLIC Page 21 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.1.2 ROR-CR-23-02: Ruby on Rails Ships Vulnerable Version of Trix Editor

Severity: LOW
CWE: 1395 –Dependency on Vulnerable Third-Party Component
Affected Component: actiontext/app/assets/javascripts/trix.js

5.1.2.1 Description

Ruby on Rails ships the Trix editor as part of the ActionText module. Trix editor in the shipped
version (2.1.10) is vulnerable to an XSS attack 2. While the impact of the vulnerability is low, the
process to keep the dependency up to date when a vulnerability is reported has, failed.

5.1.2.2 Solution Advice

X41 recommends to update the shipped and Trix editor to the latest version and employ pro-
cesses to keep third party shipped with Ruby on Rails up to date.

2https://github.com/basecamp/trix/security/advisories/GHSA-j386-3444-qgwg

X41 D-Sec GmbH PUBLIC Page 22 of 42

https://cwe.mitre.org/data/definitions/1395.html
https://github.com/basecamp/trix/security/advisories/GHSA-j386-3444-qgwg

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.1.3 ROR-CR-23-03: ActionMailerDefault Connect PolicyAllowsDowngrade
Attack

Severity: LOW
CWE: 453 – Insecure Default Variable Initialization
Affected Component: actionmailer/lib/action_mailer/base.rb

5.1.3.1 Description

Among the default settings for ActionMailer are:
1. enable_starttls: false

2. enable_starttls_auto: true

The first setting removes the requirement for TLS3 on a connection to the configure SMTP4
server. The second setting enables detecting whether a server supports TLS or not. A potential
attacker, who can intercept and manipulate traffic, may impersonate the SMTP server and force
a plain-text connection, rendering the connection no longer secure.

5.1.3.2 Solution Advice

X41 recommends to change the default settings or warn the user if they are connecting to a
non-local SMTP server without enforcing TLS.

3Transport Layer Security4Simple Mail Transfer Protocol

X41 D-Sec GmbH PUBLIC Page 23 of 42

https://cwe.mitre.org/data/definitions/453.html

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.1.4 ROR-CR-23-04: InsecureDefault Value for SameSiteProtectionofCook-
ies

Severity: LOW
CWE: 453 – Insecure Default Variable Initialization
Affected Component: actionpack

5.1.4.1 Description

The default value for same site protection for cookies is lax. This potentially allows cross site
request forgery attacks.

5.1.4.2 Solution Advice

X41 recommends changing the default setting for the same site protection for cookies to strict.

X41 D-Sec GmbH PUBLIC Page 24 of 42

https://cwe.mitre.org/data/definitions/453.html

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.1.5 ROR-CR-23-05: Weak Defenses Against SQL Injections

Severity: LOW
CWE: 657 – Violation of Secure Design Principles
Affected Component: ActiveRecord

5.1.5.1 Description

Active Record uses a Builder pattern to construct an AST5, which will then be translated to an
SQL statement tailored for the target database. At various points documented at 6 the app devel-
oper can introduce SqlLiteral objects as nodes in the AST. SqlLiterals represent literal SQL
strings, that will be translated to the final SQL statement without escaping special characters.
These entry points are responsible for SQL injections to occur.

5.1.5.2 Solution Advice

X41 recommends to disallow the creation of un-escaped SqlLiteral objects with user input
in favor of a complete model of SQL. Wherever possible, methods should be introduced that
model a certain database operation explicitly. The methods should only allow arguments which
can be validated against the model (like table or column names, functions, etc.) or can be escaped.
To ease the transition on app developers, an optional strict mode setting could be implemented,
which disallows un-escaped SqlLiterals to be appended to the AST.

5Abstract Syntax Tree6https://rails-sqli.org/

X41 D-Sec GmbH PUBLIC Page 25 of 42

https://cwe.mitre.org/data/definitions/657.html
https://rails-sqli.org/

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.1.6 ROR-CR-23-06: Potential Code Execution via Redis Cache

Severity: LOW
CWE: 502 –Deserialization of Untrusted Data
Affected Component: ActiveSupport

5.1.6.1 Description

ActiveSupport offers a RedisCacheStore to be used for caching purposes in a Rails app. Ruby
objects are (optionally) compressed and Marshal.load()-ed and stored as value under some key.
If an attacker can store arbitrary values in a Redis instance in use by the Rails app, they may be
able to achieve code execution in the context of the Rails app. The impact is low, as a fair bit of
control over the infrastructure (or another bug) is prerequisite for the attack.
One possible scenario would be that the Rails app allows arbitrary server-side requests to be
directed to the backend Redis cache. The attacker would be able to forge a key value pair with a
Ruby object as value, which would execute arbitrary code upon retrieval from the cache.

5.1.6.2 Solution Advice

X41 recommends to replace un-marshaling objects from remote sources with a safe alternative.

X41 D-Sec GmbH PUBLIC Page 26 of 42

https://cwe.mitre.org/data/definitions/502.html

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.1.7 ROR-CR-23-07: Cannot Revoke Session’s WebSocket Connection

Severity: LOW
CWE: 285 – Improper Authorization
Affected Component: Generators::AuthenticationGenerator

5.1.7.1 Description

When using the rails generate authentication command, Rails creates the following file.
1 module ApplicationCable
2 class Connection < ActionCable::Connection::Base
3 identified_by :current_user
4

5 def connect
6 set_current_user || reject_unauthorized_connection
7 end
8

9 private
10 def set_current_user
11 if session = Session.find_by(id: cookies.signed[:session_id])
12 self.current_user = session.user
13 end
14 end
15 end
16 end

Listing 5.2: /app/channels/application_cable/connection.rb

The generated code ensures that WebSocket connections are only created for authenticated
users. It also generates the terminate_session() method, shown below, which is called when a
user logs out.

1 def terminate_session
2 Current.session.destroy
3 cookies.delete(:session_id)
4 end

Listing 5.3: /app/controllers/concerns/authentication.rb

X41 D-Sec GmbH PUBLIC Page 27 of 42

https://cwe.mitre.org/data/definitions/285.html

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

When using the generated code, the ActionCable::Connection is only identified by the user
that was logged in during its creation.
This does not allow identifying – and terminating –WebSocket connections based on a particular
session. It would be possible to terminate all connections belonging to a user. However, the
terminate_session() method does not terminate any WebSocket connections.

5.1.7.2 Solution Advice

X41 recommends adding the session as an attribute to the ActionCable::Connection, and to
allow terminating based on this identifier.
As a workaround, all WebSocket connections belonging to a user could be disconnected using
disconnect(reconnect: true), effectively causing all connections to reconnect and only those with
a valid session to be accepted again.

X41 D-Sec GmbH PUBLIC Page 28 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.2 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

5.2.1 ROR-CR-23-100: Non-Cryptographic Randomness in Mail Library

Affected Component: lib/mail/mail.rb:random_tag

5.2.1.1 Description

Themail library7 used by Ruby on Rails ActionMailer and ActionMailbox generates boundary tags
that separate different parts of a multipart email 8. These should be unique and must not appear
in other parts of an email. If an attacker would be able to inject data into an email generated by
Rails and guess the boundary tag, it could allow the attacker to create additional attachments for
that email as seen in listing 5.4:

1 RANDOM_TAG='%x%x_%x%x%d%x'
2

3 def self.random_tag
4 t = Time.now
5 sprintf(RANDOM_TAG,
6 t.to_i, t.tv_usec,
7 $$, Thread.current.object_id.abs, self.uniq, rand(255))
8 end
9

10 private
11

12 def self.something_random
13 (Thread.current.object_id * rand(255) / Time.now.to_f).to_s.slice(-3..-1).to_i
14 end
15

16 def self.uniq
17 @@uniq += 1
18 end

Listing 5.4: Boundary Tag Creation
7https://github.com/mikel/mail/8https://datatracker.ietf.org/doc/html/rfc2046#section-5.1

X41 D-Sec GmbH PUBLIC Page 29 of 42

https://github.com/mikel/mail/
https://datatracker.ietf.org/doc/html/rfc2046#section-5.1

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

Various sources are used to create the boundary line, of these t.to_i offers little randomness, since
its the number of seconds since the Epoch9. t.tv_usec has around 610 combinations10, but might
be less if the timer resolution is bad. $$ and Thread.current.object_id.abs are more or less static
for a running Ruby on Rails instance. self.uniq is a counter that gets increased for each generated
tag and can therefore be guessed as well. rand(255) gets its entropy from a PRNG11 in the Ruby
Kernel12.
This is considered an informational issue, since the mail library is not in scope for this test and
the entropy seems to be sufficient in a typical Ruby on Rails setup.

5.2.1.2 Solution Advice

X41 recommends to increase the entropy in the generated boundary tags and use cryptographi-
cally secure sources of randomness for this purpose.

9https://ruby-doc.org/core-3.1.1/Time.html#method-i-to_i10https://ruby-doc.org/core-3.1.1/Time.html#method-i-tv_usec11Pseudo Random Number Generator12https://ruby-doc.org/core-3.1.0/Kernel.html#method-i-rand

X41 D-Sec GmbH PUBLIC Page 30 of 42

https://ruby-doc.org/core-3.1.1/Time.html#method-i-to_i
https://ruby-doc.org/core-3.1.1/Time.html#method-i-tv_usec
https://ruby-doc.org/core-3.1.0/Kernel.html#method-i-rand

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.2.2 ROR-CR-23-101: URL Parameter Parsing

Affected Component: ActionDispatch::ParamBuilder

5.2.2.1 Description

While fuzzing the URL parameter parser, X41 noticed an inconsistency between the URL param-
eter parsing used in Rails 7 and the recently introduced implementation used in Rails 8.
The input query string is parsed differently as shown in the following listings 5.5:

1 comments[]id=1&comments[]&comments[]delete=true&comments[]id=2

Listing 5.5: Query String for Parsing Test

This inconsistency can be observed between the two versions as shown in listing 5.6:
1 # In Rails 7.2.2.1
2 {"comments"=>[{"id"=>"1"}, {"delete"=>"true", "id"=>"2"}]}
3 # In Rails 8.0.1
4 {"comments"=>[{"id"=>"1", "delete"=>"true"}, {"id"=>"2"}]}

Listing 5.6: URL Parameter Parsing Difference

The issue occurs when a Hash parameter name (comments[]) is repeated with no key andwithout
a trailing equals character (=). Rack stops parsing the current Hash, parses the parameter’s empty
value as nil, and adds subsequent keys to a new Hash. The nil value is later removed by the
deep_munge operation. Rails seems to ignore the empty value and continues adding keys to
the current Hash. It should be noted that both variants of interpreted values can be achieved
through legitimate query strings in either version of Rails. The chance of such a query string
being accidentally created is limited because it requires omitting the trailing equals character (=),
which is allowed when parsing 13 the query string, but required when serializing it14. Clients
strictly following the URL Standard should not be affected by this inconsistency.
X41 does not regard this as a security threat.
The fuzzer source code may be found in Appendix A.1.

13https://url.spec.whatwg.org/#urlencoded-parsing14https://url.spec.whatwg.org/#urlencoded-serializing

X41 D-Sec GmbH PUBLIC Page 31 of 42

https://url.spec.whatwg.org/#urlencoded-parsing
https://url.spec.whatwg.org/#urlencoded-serializing

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.2.2.2 Solution Advice

X41 recommends to remove inconsistencies, or document the changed behaviour. The Rails im-
plementation should be inspected for further inconsistencies in URL query string interpretation.

X41 D-Sec GmbH PUBLIC Page 32 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.2.3 ROR-CR-23-102: HTTP Body Accepted in GET Requests

Affected Component: ActionDispatch

5.2.3.1 Description

X41 found that Ruby on Rails accepts HTTP GET requests with content bodies attached, and
parses the body content into params as seen in the following listing 5.7:

1 GET / HTTP/1.1
2 Host: 127.0.0.1:3000
3 Content-Type: application/json
4

5 {"foo":1}

Listing 5.7: HTTP GET Request with Body

Per RFC15 911016, ‘‘content received in a GET request has no generally defined semantics’’, and
‘‘cannot alter the meaning or target of the request’’.
Developers might be unaware of this functionality and not expect e.g. JSON17 value types to be
available as request content types.
Developers might be unaware of this functionality and not expect e.g., JSON value types to be
available as request content types.
Attackers might also use this uncommon functionality to submit request parameters that do not
show up in web server logs, or bypass the filters of a WAF18.

5.2.3.2 Solution Advice

X41 recommends to ignore the request body for GET, HEAD, and DELETE requests, unless support
of this functionality was specifically enabled.

15Request for Comments16https://www.rfc-editor.org/rfc/rfc9110.html#section-9.3.1-617JavaScript Object Notation18Web Application Firewall

X41 D-Sec GmbH PUBLIC Page 33 of 42

https://www.rfc-editor.org/rfc/rfc9110.html#section-9.3.1-6

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.2.4 ROR-CR-23-103: Request Parameter Type Tampering

Affected Component: ActionDispatch::ParamBuilder, ActionController::Parameters

5.2.4.1 Description

Contrary to the URL Standard19, Ruby on Rails supports URL query parameter values that are
not strings. Specifically, the non-scalar value types Array and Hash are supported, and nested
versions thereof.
The same issue exists when reading user-submitted values from an HTTP body and accessing a
key without specifying the expected type.
Rails does provide a method to prevent this by using params.permit()20 when accessing parame-
ters. However, this requires developers to explicitly use this function and does not affect the use
of accessing params directly, where the default is to allow any supported types.
Developers may not always account for a parameter type being different from what they ex-
pect, and may not be aware of potential implications when passing a different type of value to a
method.

5.2.4.2 Solution Advice

X41 recommends to limit the parameter values to scalar types by default, and requiring develop-
ers to explicitly permit other types when accessing user-submitted values.

19https://url.spec.whatwg.org/#urlencoded-parsing20https://api.rubyonrails.org/classes/ActionController/Parameters.html#method-i-permit

X41 D-Sec GmbH PUBLIC Page 34 of 42

https://url.spec.whatwg.org/#urlencoded-parsing
https://api.rubyonrails.org/classes/ActionController/Parameters.html#method-i-permit

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.2.5 ROR-CR-23-104: Subresource Integrity

Affected Component: ActionView::Helpers

5.2.5.1 Description

Helper methods such as javascript_include_tag21 and stylesheet_link_tag22 do support SRI when
providing the integrity attribute. However, this is not documented, not used in examples, and
not mentioned in the Helper methods such as javascript_include_tag23 and

5.2.5.2 Solution Advice

Documenting the availability of SRI, and encouraging its use could contribute to amorewidespread
use of this web security feature.
Additionally, Ruby onRails could further contribute to the spread of SRI by requiring the integrity
attribute when using a URL as a source. Setting the attribute to a value such as false could dis-
able it when developers make the active decision of not using SRI.

21https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-javascrip
t_include_tag22https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-styleshee
t_link_tag23https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-javascrip
t_include_tag

X41 D-Sec GmbH PUBLIC Page 35 of 42

https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-javascript_include_tag
https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-javascript_include_tag
https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-stylesheet_link_tag
https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-stylesheet_link_tag
https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-javascript_include_tag
https://api.rubyonrails.org/classes/ActionView/Helpers/AssetTagHelper.html#method-i-javascript_include_tag

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

5.2.6 ROR-CR-23-105: ANSI Escape Sequences Logged Unfiltered

Affected Component: Logging

5.2.6.1 Description

X41 found that Rails’ logging accepts and stores ANSI24 escape sequences unfiltered in log files,
which can lead to unexpected behavior when viewing logs.
ANSI escape sequences are special character combinations beginningwith ’\e[’ that control termi-
nal text formatting such as colors, cursor positioning, and text attributes. When logs containing
these sequences are displayed in compatible terminals, the formatting is applied rather than the
raw codes being shown.
Users may be unaware that these sequences are stored verbatim in log files, which can lead to
log parsers breaking due to unexpected control characters, terminal manipulation when viewing
logs and log data being hidden or visually altered
Attackers might leverage this behavior to manipulate log presentation, potentially hiding mali-
cious activities or creating misleading log entries when viewed by administrators.

5.2.6.2 Solution Advice

X41 recommends that logging systems should sanitize or escape ANSI control sequences before
writing to log files, unless terminal formatting is specifically required.

24American National Standards Institute

X41 D-Sec GmbH PUBLIC Page 36 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

6 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Source code audit of ISC BIND9 DNS server1• Source code audit of the Git source code version control system2
• Review of the Mozilla Firefox updater3• X41 Browser Security White Paper4• Review of Cryptographic Protocols (Wire)5• Identification of flaws in Fax Machines6,7• Smartcard Stack Fuzzing8

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1https://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/2https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/3https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/4https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf5https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf6https://www.x41-dsec.de/lab/blog/fax/7https://2018.zeronights.ru/en/reports/zero-fax-given/8https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 37 of 42

https://x41-dsec.de
mailto:info@x41-dsec.de
https://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/
https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

Acronyms

ANSI American National Standards Institute . 36
API Application Programming Interface . 11
AST Abstract Syntax Tree . 25
AWS Amazon Web Services . 11
CSP Content Security Policy . 8
CSRF Cross-Site Request Forgery . 15
CSS Cascading Style Sheets . 13
CWE Common Weakness Enumeration . 19
HSTS HTTP Strict Transport Security . 8
HTTP HyperText Transfer Protocol . 11
HTTPS HyperText Transfer Protocol Secure . 11
JSON JavaScript Object Notation . 33
PRNG Pseudo Random Number Generator . 30
REST Representational State Transfer . 14
RFC Request for Comments . 33
SMTP Simple Mail Transfer Protocol . 23
SQL Structured Query Language . 12
SRI Subresource Integrity . 8
SSRF Server-Side Request Forgery . 15
TLS Transport Layer Security . 23
URL Uniform Resource Locator . 7
WAF Web Application Firewall . 33
XSS Cross-site Scripting . 15

X41 D-Sec GmbH PUBLIC Page 38 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

YAML YAML Ain’t Markup Language . 16
ORM Object-Relational Mapping . 10
PaaS Platform as a Service . 11
MVC Model-View-Controller . 9
OAuth Open Authorization . 12

X41 D-Sec GmbH PUBLIC Page 39 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

A Appendix

A.1 URL Parameter Fuzzer

X41 wrote a differential fuzzer that compares the results of the (Rack) parameter parsing used inRails 7 and the recently introduced implementation used in Rails 8.
The fuzzer ignores inconsistencies in what the different implementations deem invalid input, butdoes not ignore abnormal crashes.
After the fuzzer found various instances of the same inconsistency reported in Informational Note 5.2.2,it has been modified to ignore this as well (KNOWNBUG).
The fuzzer was executed as follows, and no further inconsistencies or abnormal crashes werefound.

1 env ASAN_OPTIONS="allocator_may_return_null=1:detect_leaks=0:use_sigaltstack=0" \
2 LD_PRELOAD=$(ruby -e 'require "ruzzy"; print Ruzzy::ASAN_PATH') \
3 ruby trace.rb

Listing A.1: Fuzzing Command Line

1 require 'ruzzy'
2 Ruzzy.trace('fuzz.rb')

Listing A.2: trace.rb

1 require 'rack'
2 require 'rails'
3 require 'ruzzy'
4

5 # https://github.com/trailofbits/ruzzy/issues/22
6 Signal.trap("SIGALRM") do
7 puts "Alarm received!"
8 end
9

X41 D-Sec GmbH PUBLIC Page 40 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

10 include Rack::Request::Helpers
11

12 # matches patterns where a hash param is repeated with no key and no value
13 # such as name[]key1&name[]&name[]key2
14 KNOWNBUG = /
15 (\A|&) # start of param
16 \s* #
17 (?<name> [^&=] (\[[^&=]*\])* [^&=\[]* (\[[^&=]*\])* \[\]) # ...
18 [^&=]* # key name after the brackets
19 (=[^&\s]* | &+) # "=" param-value, or "&"
20 \s* #
21 ([^&]* &)* # any amount of other params
22 \s* #
23 \k<name> # the param name from above again, with no key or value
24 \s* #
25 (&|\Z) # end of param
26 /x
27

28 def try_rack(str)
29 ActionDispatch::Request::Utils::NoNilParamEncoder.normalize_encode_params(parse_query(str))
30 rescue Rack::Utils::ParameterTypeError, Rack::Utils::InvalidParameterError, Rack::QueryParser:: ⌋

ParamsTooDeepError => e↪→

31 return {"error" => true}
32 end
33

34 def try_rails(str)
35 ActionDispatch::ParamBuilder.from_query_string(str)
36 rescue ActionDispatch::ParamError => e
37 return {"error" => true}
38 end
39

40 fuzz = lambda do |input|
41 rack = try_rack(input)
42 rails = try_rails(input)
43 return 0 if rails === {"error" => true} or rack === {"error" => true}
44 unless rack === rails
45 if KNOWNBUG.match(input)
46 return 0
47 end
48

49 err = "Got different results for: #{input.inspect}\n"
50 err += "rack: #{rack.inspect}\n"
51 err += "rails: #{rails.inspect}"
52 raise err
53 end
54 return 0
55 end
56

57 Ruzzy.fuzz(fuzz)

Listing A.3: fuzz.rb
X41 D-Sec GmbH PUBLIC Page 41 of 42

Code Audit on Ruby on Rails Open Source Technology Improvement Fund

X41 D-Sec GmbH PUBLIC Page 42 of 42

	Executive Summary
	Introduction
	Methodology
	Scope
	Recommended Further Tests

	Threat Model and Test Plan
	System Overview
	Ruby on Rails Architecture and Key Components
	Typical Deployment Scenarios

	Assets Identification
	Entry Points
	Trust Boundaries
	Client-Server Boundary
	Application-Database Boundary
	Application-OS Boundary
	Application-Network Boundary
	Inter-Component Boundaries within the Application
	Ruby

	Threat Categories
	Specific Ruby on Rails Vulnerabilities
	Conclusions and Proposed Test Plan
	Source Code Auditing
	Business Logic
	Deployment Scenarios
	Boundary Trusts
	Security Mechanisms
	Improve Tooling

	Rating Methodology for Security Vulnerabilities
	Results
	Findings
	ROR-CR-23-01
	ROR-CR-23-02
	ROR-CR-23-03
	ROR-CR-23-04
	ROR-CR-23-05
	ROR-CR-23-06
	ROR-CR-23-07

	Informational Notes
	ROR-CR-23-100
	ROR-CR-23-101
	ROR-CR-23-102
	ROR-CR-23-103
	ROR-CR-23-104
	ROR-CR-23-105

	About X41 D-Sec GmbH
	Appendix
	URL Parameter Fuzzer

