
RandomXAudit
forMonero Labs

Final Report andManagement Summary

2019-07-05

PUBLIC

X41D-SECGmbH
Dennewartstr. 25-27
D-52068 Aachen

Amtsgericht Aachen: HRB19989

https://x41-dsec.de/

info@x41-dsec.de

https://x41-dsec.de/
info@x41-dsec.de

RandomXAudit Monero Labs

Revision Date Change Editor
1 2019-06-12 Initial Report E. Sesterhenn
2 2019-06-27 Findings G. Kopf, L. Merino, S. Bazanski
3 2019-06-27 Summaries E. Sesterhenn, G. Kopf
4 2019-06-30 Finalization M. Vervier, E. Sesterhenn, S.

Bazanski
5 2019-07-05 Corrections M. Vervier, S. Bazanski

X41D-Sec GmbH PUBLIC Page 1 of 50

RandomXAudit Monero Labs

Contents

1 Executive Summary 4
2 Introduction 6
2.1 Findings Overview . 6
2.2 Scope . 7
2.3 Recommended Further Tests . 7

3 RatingMethodology 8
4 Results 9
4.1 Findings . 9
4.2 Feasibility of Implementing RandomX in Hardware 18
4.3 Weaknesses in the Cryptographic Implementations and Algorithms 27
4.4 Side Findings and General Observations . 31

5 About 38
5.1 X41D-Sec GmbH . 38
5.2 Serge Bazanski . 39
5.3 Secfault Security GmbH . 39

A Parallelizer 42

X41D-Sec GmbH PUBLIC Page 2 of 50

RandomXAudit Monero Labs

Dashboard
Target
Customer Monero Labs
Name RandomX
Type Sourcecode
Version Commit e4b227010428571b0c4e3209d714bbcfeb943a61

Engagement
Type Source Code Audit and Design Review
Consultants 3: Gregor Kopf (SFS), LuisMerino (X41), Serge Bazanski
Engagement Effort 30 days, 2019-06-10 to 2019-06-28

Total issues found 4

Figure 1: IssueOverview (l: Severity, r: CWEDistribution)

X41D-Sec GmbH PUBLIC Page 3 of 50

mailto:luis.merino@x41-dsec.de

RandomXAudit Monero Labs

1 Executive Summary
X41 was tasked by the Monero project with a review of the newly-developed RandomX PoW
scheme. The project was coordinated by theOpen Source Technology Improvement Fund.
This document describes the results of the security review of RandomX.
A total of four vulnerabilities were discovered during the test by X41. Nonewere rated as critical,
nonewere classified as high severity, four as medium, and none as low. Additionally, eleven issues
without a direct security impact were identified.

Figure 1.1: Issues and Severity

The design reviewwas performed based on the documentation available in the RandomXGitHub
repository. The code review has been performed based on the publicly available source code.
All tasks have been performed in a manual fashion, without leveraging tools such as automated
vulnerability scanners. In addition to the code review, limited dynamic tests have been performed -
mainly in order to verify assumptions and to better understand the target implementation. The
analyses were performed on commit ID e4b227010428571b0c4e3209d714bbcfeb943a61 in the
RandomXGitHub repository.
The overall aim of the reviewwas to identify potential security vulnerabilities in both, design and

X41D-Sec GmbH PUBLIC Page 4 of 50

RandomXAudit Monero Labs

implementation of the new scheme. Furthermore, an analysis of the feasibility of a hardware
implementation of RandomXwas performed.
The reviewwas conducted in the time frame from2019-06-03 to 2019-06-28 by three experienced
security experts.
Themost severe findings include a number of out-of-bounds memory accesses in non-standard
configurations. The currentMonero parameters are not affected. When changing compile time
configuration such as the program size, the described vulnerabilities come into effect. X41 found
that it is likely possible to implement RandomX as a relatively simple, albeit large, VLIW CPU
without any branch prediction or instruction scheduling logic, which yet allows for IPC rates similar
to speculative, out of order and super scalar execution of a Conventional CPU.
Furthermore, a large number of side-findings have been identified, which are described in sec-
tion 4.4 of this document. These do not represent actual vulnerabilities in the analyzed version
of RandomX, but might become problematic in case of code re-use or future extensions of the
implementation.
At the time of writing, the developers of RandomX have already developed fixes for the vulnerabili-
ties described in this report.
In the time given, X41was able to identify several flaws, but nothing that is considered critical.

X41D-Sec GmbH PUBLIC Page 5 of 50

RandomXAudit Monero Labs

2 Introduction
X41 reviewed the design and implementation of RandomX which is a PoW1 algorithm, that is
optimized for general-purpose CPUs. To achieve this, random code execution withmemory-hard
techniques are used.
Since the RandomX algorithm will be used in the cryptocoin context of Monero, any flaws and
insecurities can have a financial impact. The goal of this test was to uncover such flaws before they
are exploited by real adversaries.

2.1 Findings Overview
DESCRIPTION SEVERITY ID REF
Hard-Coded CodeSize MEDIUM RNDX-PT-19-01 4.1.1
Integer Handling in Jump Target Calculation MEDIUM RNDX-PT-19-02 4.1.2
Integer Truncation onDataset Allocation Size MEDIUM RNDX-PT-19-03 4.1.3
Incorrect Code Generated in EmulationMode MEDIUM RNDX-PT-19-04 4.1.4
Low reliance on Branch Prediction Unit NONE RNDX-PT-19-100 4.2.1
Low reliance on Front-End Scheduling Logic (dynamic superscalar
and out-of-order execution)

NONE RNDX-PT-19-101 4.2.2
Lack of reliance on other modern CPU elements NONE RNDX-PT-19-102 4.2.3
Insecure AesHash1R NONE RNDX-PT-19-103 4.3.1
Reversible AesGenerator NONE RNDX-PT-19-104 4.3.2
Insufficient Diffusion in AesGenerator4R NONE RNDX-PT-19-105 4.3.3
Poor Code Coverage NONE RNDX-PT-19-106 4.4.1
JIT Memory Pages for Generated Code are Writable and Exe-
cutable

NONE RNDX-PT-19-107 4.4.2
Sandboxing RandomX Execution NONE RNDX-PT-19-108 4.4.3
Incorrect SuperScalarHash Latency when Program Size is too Small NONE RNDX-PT-19-109 4.4.4
Lack ofMachine Readable Specification NONE RNDX-PT-19-110 4.4.5

Table 2.1: Security Relevant Findings
1 Proof-of-Work

X41D-Sec GmbH PUBLIC Page 6 of 50

RandomXAudit Monero Labs

2.2 Scope
The audit was based on commit ID e4b227010428571b0c4e3209d714bbcfeb943a61 in the
RandomXGitHub repository2.
The design reviewwas performed based on the documentation available in the RandomXGitHub
repository. The code review has been performed based on the publicly available source code.
All tasks have been performed in a manual fashion, without leveraging tools such as automated
vulnerability scanners. In addition to the code review, limited dynamic tests have been performed -
mainly in order to verify assumptions and to better understand the target implementation.

2.3 Recommended Further Tests
While economically viable FPGA3 implementations of the algorithm have been ruled out, further
research into practical ASIC4 implementations of a RandomX processor is needed. To that end,
one could begin the microarchitectural design of the a VLIW5 architecture as described earlier,
or look into further available optimizations and approaches. Once amicroarchitecture design is
achieved, more precise gate/cell counts can be established and thus a price tag can be set on the
cost of implementing RandomX inVLSI6 CMOS7. With this number, and the attained Fmax/MIPS of
the design at a given process/node size, one can establish theminimum scale to achieve economic
viability of running RandomX on ASICs.

2 https://github.com/tevador/RandomX
3 Field Programmable Gate Array
4 Application-Specific Integrated Circuit
5 Very Long InstructionWord
6 Very Large Scale Integration
7 Complementarymetal-oxide-semiconductor

X41D-Sec GmbH PUBLIC Page 7 of 50

https://github.com/tevador/RandomX

RandomXAudit Monero Labs

3 RatingMethodology
Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks forMonero Labs are beyond the scope of a pen-
etration test which focuses entirely on technical factors. Yet technical results from a penetration
test may be an integral part of a general risk assessment. A penetration test is based on a limited
time frame and only covers vulnerabilities and security issues which have been found in the given
time, there is no claim for full coverage.
In total five different ratings exist, which are the following:

Severity Rating
None
Low

Medium
High
Critical

Findings with security impact are classified using CWE1. The CWE is a set of software weaknesses
that allows the categorization of vulnerabilities and weaknesses in software. If applicable X41
gives a CWE-ID for each vulnerability that is discovered during a test.
CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information is
found on the CWE-Site at https://cwe.mitre.org/.

1 CommonWeakness Enumeration
2 https://www.mitre.org

X41D-Sec GmbH PUBLIC Page 8 of 50

https://cwe.mitre.org/
https://www.mitre.org

RandomXAudit Monero Labs

4 Results
This chapter describes the security relevant results of the RandomX security review. Following
security relevant findings in Section 4.1, the feasibility of an implementation of RandomX in dedi-
cated hardware is discussed in section 4.2. Furthermore, weaknesses in the implementation and
usage of cryptographic algorithms such as AES1 are discussed in section 4.3. Additionally, findings
without a direct security impact are documented in Section 4.4.

4.1 Findings
The following subsections describe findings with a direct impact on the security of RandomX,
depending on the configuration and context it is used in.

4.1.1 RNDX-PT-19-01: Hard-Coded CodeSize

Severity: MEDIUM
CWE: 787 – Out-of-boundsWrite

4.1.1.1 Description

While reviewing the implementation of the RandomX JIT2 compiler it was found that the CodeSize
parameter is hard-coded to 64k. This is illustrated by the code excerpt below:

1 namespace randomx {

2

3 class Program;

4 class ProgramConfiguration;

1 Advanced Encryption Standard
2 Just In Time

X41D-Sec GmbH PUBLIC Page 9 of 50

https://cwe.mitre.org/data/definitions/787.html

RandomXAudit Monero Labs

5 class SuperscalarProgram;

6 class JitCompilerX86;

7 class Instruction;

8

9 typedef void(JitCompilerX86::*InstructionGeneratorX86)(Instruction&, int);

10

11 constexpr uint32_t CodeSize = 64 * 1024;

12 }

Listing 4.1: Definition of CodeSize

When generating the program code, the JIT compiler however loops over all input data, which is of
length prog.getSize(). This is illustrated by the below code excerpt.

1 void JitCompilerX86::generateProgramPrologue(Program& prog, ProgramConfiguration& pcfg) {

2 instructionOffsets.clear();

3 for (unsigned i = 0; i < 8; ++i) {

4 registerUsage[i] = -1;

5 }

6 codePos = prologueSize;

7 memcpy(code + codePos - 48, &pcfg.eMask, sizeof(pcfg.eMask));

8 emit(REX_XOR_RAX_R64);

9 emitByte(0xc0 + pcfg.readReg0);

10 emit(REX_XOR_RAX_R64);

11 emitByte(0xc0 + pcfg.readReg1);

12 memcpy(code + codePos, codeLoopLoad, loopLoadSize);

13 codePos += loopLoadSize;

14 for (unsigned i = 0; i < prog.getSize(); ++i) {

15 Instruction& instr = prog(i);

16 instr.src %= RegistersCount;

17 instr.dst %= RegistersCount;

18 generateCode(instr, i);

19 }

Listing 4.2: Generation of the Program

In thedefault configuration, this appears tohaveno impact, asCodeSize is largeenough tohold all in-
structions generated by the JIT. However, if the configuration parameter RANDOMX_PROGRAM_SIZE
is set to larger values (e.g., to 131070), the generated instructions will not fit in the hard-coded
code buffer anymore, which results in an out-of-bounds access.
The below crash dump further illustrates the problem.

1 $ bin/benchmark --mine --jit --init 4

2 RandomX benchmark

3 - full memory mode (2080 MiB)

X41D-Sec GmbH PUBLIC Page 10 of 50

RandomXAudit Monero Labs

4 - JIT compiled mode

5 - hardware AES mode

6 - small pages mode

7 Initializing (4 threads) ...

8 Memory initialized in 43.465 s

9 Initializing 1 virtual machine(s) ...

10 Running benchmark (1000 nonces) ...

11 ===

12 ==2646==ERROR: AddressSanitizer: unknown-crash on address 0x7fc9acd14000 at pc 0x7fc9b00fec41 bp

0x7fff55d8e060↪→

13 WRITE of size 3 at 0x7fc9acd14000 thread T0

14 #0 0x7fc9b00fec40 in __interceptor_memcpy

/build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_↪→

15 #1 0x5625e28871cb in randomx::JitCompilerX86::emit(unsigned char const*, unsigned long)

(/home/lm/pkg/Random↪→

16 #2 0x5625e28880be in void randomx::JitCompilerX86::emit<3ul>(unsigned char const (&) [3ul])

(/home/lm/pkg/Ra↪→

17 #3 0x5625e287e1ce in randomx::JitCompilerX86::genAddressReg(randomx::Instruction&, bool)

src/jit_compiler_x8↪→

18 #4 0x5625e2884a83 in randomx::JitCompilerX86::h_FSUB_M(randomx::Instruction&, int)

src/jit_compiler_x86.cpp:↪→

19 #5 0x5625e287c7a9 in randomx::JitCompilerX86::generateCode(randomx::Instruction&, int)

src/jit_compiler_x86.↪→

20 #6 0x5625e287baee in randomx::JitCompilerX86::generateProgramPrologue(randomx::Program&,

randomx::ProgramCon↪→

21 #7 0x5625e287a874 in randomx::JitCompilerX86::generateProgram(randomx::Program&,

randomx::ProgramConfigurati↪→

22 #8 0x5625e2865531 in randomx::CompiledVm<randomx::AlignedAllocator<64ul>, false>::run(void*)

src/vm_compiled↪→

23 #9 0x5625e285f455 in randomx_calculate_hash src/randomx.cpp:242

24 #10 0x5625e28447d9 in mine(randomx_vm*, std::atomic<unsigned int>&, AtomicHash&, unsigned

int, int) src/test↪→

25 #11 0x5625e28479ad in main src/tests/benchmark.cpp:231

26 #12 0x7fc9af0e6ce2 in __libc_start_main (/usr/lib/libc.so.6+0x23ce2)

27 #13 0x5625e284352d in _start (/home/lm/pkg/RandomX/bin/benchmark+0x17652d)

28

29 Address 0x7fc9acd14000 is a wild pointer.

30 SUMMARY: AddressSanitizer: unknown-crash

/build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_inter↪→

Listing 4.3: Crash Dump

Furthermore, it should be noted that other parameters can also trigger the vulnerability. For in-
stance, setting RANDOMX_SUPERSCALAR_LATENCY to 170 · 64 and RANDOMX_SUPERSCALAR_MAX_SIZE
to 512 · 64will also cause a crash.
The exploitability of this situation depends on the particular setting. It cannot be ruled out that in
certain configurations this issue could become exploitable. One possible scenario could be that
RANDOMX_PROGRAM_SIZE is set to a value that inmost cases does not cause the JITed code to exceed

X41D-Sec GmbH PUBLIC Page 11 of 50

RandomXAudit Monero Labs

the hard-coded size. Such a configuration could be undetected until an attacker specifically mines
for a crashing program.
The resulting impact would at least be a DoS issue allowing an attacker to disrupt the network’s
mining/verification process. Code execution attacks might furthermore be possible.

4.1.1.2 Solution Advice

It is recommended to calculate the value of CodeSize depending on the size of the input to be
translated or to place an upper limit on the RANDOMX_PROGRAM_SIZE parameter in order to prevent
the above situation.

X41D-Sec GmbH PUBLIC Page 12 of 50

RandomXAudit Monero Labs

4.1.2 RNDX-PT-19-02: Integer Handling in Jump Target Calculation

Severity: MEDIUM
CWE: 190 – Integer Overflow orWraparound

4.1.2.1 Description

While reviewing the implementation of the RandomX JIT compiler, it was found that during the
calculation of jump targets, the code does not appear to consider potential corner cases, which
could lead to integer-related issues. Please consider the following excerpt from the source code:

1 void JitCompilerX86::h_CBRANCH(Instruction& instr, int i) {

2 int reg = instr.dst;

3 int target = registerUsage[reg] + 1;

4 emit(REX_ADD_I);

5 emitByte(0xc0 + reg);

6 int shift = instr.getModCond() + ConditionOffset;

7 uint32_t imm = instr.getImm32() | (1UL << shift);

8 if (ConditionOffset > 0 || shift > 0)

9 imm &= ~(1UL << (shift - 1));

10 emit32(imm);

11 emit(REX_TEST);

12 emitByte(0xc0 + reg);

13 emit32(ConditionMask << shift);

14 emit(JZ);

15 emit32(instructionOffsets[target] - (codePos + 4));

16 //mark all registers as used

17 for (unsigned j = 0; j < RegistersCount; ++j) {

18 registerUsage[j] = i;

19 }

20 }

Listing 4.4: CBRANCHHandling

It canbeobserved thatwhenemitting the jumpoffset, the codeassumes thatinstructionOffsets[target]
is smaller than (codePos + 4). It should however be noted that both variables are defined as
signed integers. Furthermore, the JIT compiler code does now appear to impose any limits on these
values. For programs larger than 2GB, the values could therefore wrap and become negative. In
particular, it might be possible that instructionOffsets[target] holds a positive value, while
(codePos + 4) is negative. In such a situation, the computed jump offset could point to a location
outside of the generated code, whichmight result in a code execution issue.
It should be noted that currently, such long programs appear to be not supported by RandomX.

X41D-Sec GmbH PUBLIC Page 13 of 50

https://cwe.mitre.org/data/definitions/190.html

RandomXAudit Monero Labs

However, this is not an explicit limitation introduced by proper checks - it rather stems from the
fact that certain values (such as ProgramSize) are currently hard-coded.

4.1.2.2 Solution Advice

The recommended approach for preventing such integer-related issues from happening is to
introduce explicit limits for the program size, which should be governed by respective checks in the
code.

X41D-Sec GmbH PUBLIC Page 14 of 50

RandomXAudit Monero Labs

4.1.3 RNDX-PT-19-03: Integer Truncation onDataset Allocation Size

Severity: MEDIUM
CWE: 131 – Incorrect Calculation of Buffer Size

4.1.3.1 Description

DatasetSize is computed by adding RANDOMX_DATASET_BASE_SIZE and RANDOMX_DATASET_EX-
TRA_SIZE and storing it in a 64 bit unsigned integer variable. This value is then passed as an
argument to allocMemory() to indicate the buffer size to allocate.

1 constexpr uint64_t DatasetSize = RANDOMX_DATASET_BASE_SIZE + RANDOMX_DATASET_EXTRA_SIZE;

Listing 4.5: Definition of DatasetSize

1 // allocator prototype

2 struct LargePageAllocator {

3 static void* allocMemory(size_t);

4 static void freeMemory(void*, size_t);

5 };

6

7 // dataset allocation

8 randomx_dataset *randomx_alloc_dataset(randomx_flags flags) {

9 randomx_dataset *dataset = new randomx_dataset();

10

11 try {

12 if (flags & RANDOMX_FLAG_LARGE_PAGES) {

13 dataset->dealloc = &randomx::deallocDataset<randomx::LargePageAllocator>;

14 dataset->memory = (uint8_t*)randomx::LargePageAllocator::allocMemory(c
randomx::DatasetSize);↪→

15 }

16 else {

17 dataset->dealloc = &randomx::deallocDataset<randomx::DefaultAllocator>;

18 dataset->memory = (uint8_t*)randomx::DefaultAllocator::allocMemory(c
randomx::DatasetSize);↪→

19 }

20 }

Listing 4.6: Dataset Allocation

When compiling RandomX for 32-bits architectures, the value of DatasetSize is truncated from
64 bits (uint64_t) to 32 bits (size_t) while invoking allocMemory(). When the value of Dataset-
Size is bigger than 4294967295, it will not fit in 32 bits and overflow to a very small value, hence

X41D-Sec GmbH PUBLIC Page 15 of 50

https://cwe.mitre.org/data/definitions/131.html

RandomXAudit Monero Labs

leading to the allocation of a small buffer. Subsequent write and read operations during data
set initialization and usage will effectively lead to invalid memory accesses, which could lead to
memory corruption.

1 src/randomx.cpp:123:21: runtime error: pointer index expression with base 0xd99ff800 overflowed

to 0x1a1ff7c0↪→

2 AddressSanitizer:DEADLYSIGNAL

3 ===

4 ==1991==ERROR: AddressSanitizer: SEGV on unknown address 0x1a1ff7c0 (pc 0x5665b000 bp 0x00000038

sp 0xd8fff0a0 T2)↪→

5 ==1991==The signal is caused by a WRITE memory access.

6 AddressSanitizer:DEADLYSIGNAL

7 #0 0x5665afff in randomx::initDatasetItem(randomx_cache*, unsigned char*,

8 unsigned long long) src/dataset.cpp:182

9 #1 0x5665b19d in randomx::initDataset(randomx_cache*, unsigned char*,

10 unsigned int, unsigned int) src/dataset.cpp:187

11 #2 0x5663465c in randomx_init_dataset src/randomx.cpp:123

Listing 4.7: Crash Dump

Although the default values provided for RANDOMX_DATASET_BASE_SIZE and RANDOMX_DATASET-
_EXTRA_SIZE in the RandomX implementation we reviewed are safe and dont́ lead to an overflow
of DatasetSize, adjusting these values in the future could lead to an exploitable security flaw.

4.1.3.2 Solution Advice

X41 recommends performing sanity checks on the constants used for the data set size alloca-
tion, aborting the execution when these values overflow. Furthermore, it is recommended to use
the same precision types when passing around sizes and offsets to avoid integer truncation and
overflow.

X41D-Sec GmbH PUBLIC Page 16 of 50

RandomXAudit Monero Labs

4.1.4 RNDX-PT-19-04: Incorrect Code Generated in EmulationMode

Severity: MEDIUM
CWE: 119 – Improper Restriction of Operations within the Bounds of aMemory Buffer

4.1.4.1 Description

When mining in emulation mode after increasing RANDOMX_PROGRAM_SIZE to 256k, the virtual
machine reaches an unreachable state inside executeBytecode(), which is triggered with a build
instrumentedwith UndefinedSanitizer.
Furthermore, when using instrumentation of AddressSanitizer instead, an invalid memory access is
also triggered inside executeBytecode().

1 ==3075==ERROR: AddressSanitizer: SEGV on unknown address 0x558ee23ad588 (pc 0x558ee2358197 bp

0x7ffe2be506b0 sp 0x7ffe2be505e0 T0)↪→

2 ==3075==The signal is caused by a READ memory access.

3 #0 0x558ee2358196 in randomx::InterpretedVm<randomx::AlignedAllocator<64ul>, false>

4 ::executeBytecode(int&, unsigned long (&) [8], double __vector(2) (&) [4],

5 double __vector(2) (&) [4], double __vector(2) (&) [4]) src/vm_interpreted.cpp:82

6 #1 0x558ee235a183 in randomx::InterpretedVm<randomx::AlignedAllocator<64ul>, false>

7 ::executeBytecode(unsigned long (&) [8], double __vector(2) (&) [4],

8 double __vector(2) (&) [4], double __vector(2) (&) [4]) src/vm_interpreted.cpp:60

9 #2 0x558ee235a88c in randomx::InterpretedVm<randomx::AlignedAllocator<64ul>, false>

10 ::execute() src/vm_interpreted.cpp:245

11 #3 0x558ee235b184 in randomx::InterpretedVm<randomx::AlignedAllocator<64ul>, false>

12 ::run(void*) src/vm_interpreted.cpp:54

13 #4 0x558ee233f506 in randomx_calculate_hash src/randomx.cpp:242

14 #5 0x558ee2336867 in mine(randomx_vm*, std::atomic<unsigned int>&,

15 AtomicHash&, unsigned int, int) src/tests/benchmark.cpp:96

16 #6 0x558ee233a68c in main src/tests/benchmark.cpp:231

17 #7 0x7fdc40542ee2 in __libc_start_main (/usr/lib/libc.so.6+0x26ee2)

18 #8 0x558ee23364ed in _start (/home/lm/pkg/RandomX/bin/benchmark+0xc4ed)

Listing 4.8: Invalid memory access on RandomX emulation

X41 has not identified the root cause of this issue.

4.1.4.2 Solution Advice

X41 advises reviewing and testing the implementation of the RandomX emulator with nondefault
parameters.

X41D-Sec GmbH PUBLIC Page 17 of 50

https://cwe.mitre.org/data/definitions/119.html

RandomXAudit Monero Labs

4.2 Feasibility of Implementing RandomX in Hardware
The goal of RandomX is not tomake ASIC implementations of the algorithm impossible - merely,
to make them economically unviable. An important factor in achieving this goal is reliance on
economies of scale: theoretically, if RandomX were to be only implementable on conventional,
modern, high performance CPUs, then anyASIC implementationwould have to not only implement
such a CPU, but also do it at a scale comparable to industry leaders (like Intel or AMD). To try
to break this and achieve an ASIC implementation of RandomX, we have to look closer into this
assumption: does RandomX actually exercise all elements of a modern CPU3?
At a first glance, we see that is the case: RandomXmakes heavy use of integer and floating point
arithmetic to exercise FPUs and ALUs, scratchpad accesses to exercise L1 to L3 cache, and the
dataset to exercise DRAM4. However, we have found a few weaknesses. These mostly stem
from one important different between a typical instruction stream executed by RandomX vs. one
executed by conventional CPUs: we know, ahead of time, that they will be executed a number
of times in sequence, and that they will have a given statistical likelihood of some instruction
composition.

4.2.1 RNDX-PT-19-100: Low reliance on Branch Prediction Unit

Severity: NONE
CWE: None

4.2.1.1 Description

In Conventional CPUs, a dynamic branch predictor has to keep track of branches taken so far and
make predictions in advancewhich branchwill be taken in order to prevent unnecessary pipeline
flushes, before those instructions on which the branch relies get executed. In other words, the
Branch Prediction Unit is responsible for the statistical and heuristic analysis of an instruction
stream as it is executed, and for telling theCPU speculative execution logicwhich side of the branch
is likely to be taken. High accuracy branch prediction is crucial not only to achieve meaningful
speculative execution, but even to fill a core’s pipeline before another branch instruction is to be
execute. The branch predictor makes up a sizable part of the end die area of a conventional CPU.
In RandomX however, it is trivial to predict whether a branchwill be taken: 99.61% 5 of RandomX
CFBRANCH instructions are not taken. As such, a RandomXCPU implementation can have a static
3 Central Processing Unit
4 Dynamic Random-AccessMemory
5 tested by instrumenting vm_interpreted.cpp to count branch statistics over 10000 nonces

X41D-Sec GmbH PUBLIC Page 18 of 50

RandomXAudit Monero Labs

branch prediction of “not taken”, and have as good of an accuracy, if not better, as a conventional
CPU branch predictor for RandomX instruction streams. Therefore, we have eliminated the need
for a RandomX implementation to have any branch prediction logic in order to get meaningful spec-
ulative execution. Checkpoint/rollback logic still needs to be implemented, but that is a relatively
small die area and complexity compared to the size of a branch predictor itself.

X41D-Sec GmbH PUBLIC Page 19 of 50

RandomXAudit Monero Labs

4.2.2 RNDX-PT-19-101: LowrelianceonFront-EndSchedulingLogic (dynamic
superscalar and out-of-order execution)

Severity: NONE
CWE: None

4.2.2.1 Description

In a conventional CPU, out-of-order and superscalar execution provides a IPC6 boost by finding
optimized ways to map an incoming (µ)instruction stream into execution units in the core. For
instance, three incoming integer operations that have no data dependencies between them can
be immediately scheduled to execute in parallel on three ALUs. If the next instruction stream is
amemory load, that can then bemapped onto a freememory execution unit. Then, retiring logic
would coalesce the result of those parallel executions into a data state that then other incoming
instructions can depend on, andwrite them back into a register file (whichmay ormay not reflect
ISA7 registers). The logic required to schedule these instructions is fairly complex and also one of
themain drivers in end-user visible execution speed of a CPU - especially in x86 CPUs. The x86’s
very strict memorymodel (that forces strict ordering of data effects visibility, both within a core
and across cores) pushes a lot of logic into the scheduler on-die in order to keep this model in check
while also reordering and doingmultiple-issue asmuch as possible.
If wewant to implement a RandomXCPU that keeps a IPC ratio high, we cannot remove the extra
execution units available to the core. However, with preprocessing, we can eliminate the need for
nearly all scheduling logic required in the core front-end. This is where hybrid execution comes to
play: if we can preprocess the RandomX instruction stream to transform into a stream that has
execution unit scheduling information encoded, we can have extreme complexity savings on the
hardware side, and thusmake it more economically feasible to implement such hardware. As the
perf-simulation.cpp example shows, a simple 4/2 execution/memory unit implementation has an
over four-fold increase in IPC compared to a simple in-order, non-superscalar implementation.
Implementing this statically in a preprocessor would allow us to ’move’ the expensive front-end
scheduling logic into a program running once for every RANDOMX_PROGRAM_ITERATIONS
(default: 2048) in advance.
One example of achieving this implementationwould be aVLIWCPU,where every instruction in its
native stream definesmultiple operations to happen simultaneously on different native execution
units that output on different buses/registers. These operations could be either directly RandomX
ISA instructions, chunks of functionality thereof, or a fully separate instruction set (equivalent
6 Instruction per Clock
7 Instruction Set Architecture

X41D-Sec GmbH PUBLIC Page 20 of 50

RandomXAudit Monero Labs

to CPU µops). A preprocessor, taking on the role of a CPU frontend, would convert a RandomX
instruction stream into such VLIW instructions ahead of time (see: figure 4.1).

Figure 4.1: JIT vs Preprocessor

In order to demonstrate the potential of this approach, X41wrote independent analysis software
(see appendix A) to prove that inter-instruction data dependency is low enough to make this
approach attractive.
Ourmodel preprocessor (’parallelizer’) has a few implementation details that make it pessimistic
when it comes to possible parallelization:

• all branches are barriers that parallelization cannot happen across
• all memory writes->reads are fully dependent (e.g., any write is a barrier to all reads)

There are also some implementation details that make it optimistic when it comes to the resulting
hardware:

• there is no limit on the parallel execution of integer and floating point operations
• all instructions are single-cycle - this does not have to be the case in an actual hardware
implementation, but simplifies the proof of concept significantly

X41D-Sec GmbH PUBLIC Page 21 of 50

RandomXAudit Monero Labs

This allows for some very wide instructions to be generated - ones that employ the use of nearly 20
execution units in parallel without any data dependency between them!

1 $ python3 parallelizer.py

2

3 BasicBlock 00-17

4 00 | c76e5e4b7b469931 | | ISUB_M r1, r6

5 01 | b3d23f340a68e963 | | IXOR_R r1, r0

6 02 | 42d469735d83124b | | IMULH_R r2, r3

7 03 | 7e021ca32db34a5c | | IMUL_RCP r2, r3

8 04 | cfe32e37bd7845b7 | | FSUB_M f1, f1, mem[r0+3487772215]

9 05 | f28aacfe9de27c7b | | IROR_R r4, r2

10 06 | 6ccf393b77c4f597 | | FADD_R f1, f1, a0

11 07 | 418a0cc5bf67b524 | | ISUB_R r5, r7

12 08 | b2ffe80058cf804a | | IMUL_M r0, r7

13 09 | 31ea35b93686c807 | | IADD_RS r0, r6

14 0a | 4646607e9f451514 | | IADD_RS r5, r5

15 0b | 88b7993a5386a397 | | FADD_R f3, f3, a2

16 0c | 448b80f33aff208a | | FADD_R f0, f0, a3

17 0d | 1e537185e3564719 | | IADD_M r7, r6

18 0e | 3c6eb30968fbbe69 | | IXOR_R r6, r3

19 0f | b4ec6f9f83ed7829 | | ISUB_R r0, r5

20 10 | 79f9ddc78e3f6500 | | IADD_RS r5, r7

21 11 | 43faad1273a67fa9 | | FSUB_R f3, f3, a2

22 12 | af31b8290df6e8a7 | | FSUB_R f0, f0, a2

23 13 | 1e195f4824154cb9 | | FSUB_M f0, f0, mem[r5+504979272]

24 14 | 3757a1986808c0db | | FSQRT_R

25 15 | d02202fb2ed43c64 | | IXOR_R r4, r4

26 16 | 7a92b0dde6af13ea | | CBRANCH r3, 00 (7a92b0dd)

27

28 Parallelized BasicBlock 00-17

29 | 00 01 02 04 07 08 09 0b 0c 0d 0e 14 15 | 4 FP, 9

ALU, 4 MEM | srcs e0, f0, f3, m, m, m, m, r0, r0, r3, r3, r6, r6, r6, r7, r7, dsts a0, a2,

a3, e0, f0, f1, f1, f3, r0, r0, r1, r1, r2, r4, r5, r6, r7

↪→

↪→

30 | 03 06 0a 10 11 12 | 3 FP, 3

ALU, 0 MEM | srcs f0, f1, f3, r2, r5, r7, dsts a0, a2, a2, f0, f1, f3, r2, r5, r5↪→

31 | 05 0f 13 | 1 FP, 2

ALU, 1 MEM | srcs m, r2, r5, r5, dsts f0, f0, r0, r4↪→

32 | 16 | 0 FP, 0

ALU, 0 MEM |↪→

33

34 [...]

35

36 Program instructions: 256

37 Parallelized instructions: 75

38 Speedup: 3.41x

Listing 4.9: Parallelizer Sample

With such a low data dependency we get a preprocessable parallelization factor of on average 3.4x

X41D-Sec GmbH PUBLIC Page 22 of 50

RandomXAudit Monero Labs

(VLIW instructions vs RandomX instructions).

X41D-Sec GmbH PUBLIC Page 23 of 50

RandomXAudit Monero Labs

4.2.3 RNDX-PT-19-102: Lack of reliance on othermodern CPU elements

Severity: NONE
CWE: None

4.2.3.1 Description

RandomX does not rely on any of the following features of modern CPUs, thereby additionally
lowering the complexity of a possible ASIC implementation:

• privileged instructions
• interrupts and interrupt routing (x86 APIC)
• TLB8s,theMMU9 and virtual memory in general
• inter-core communication and cache coherence

While these do not make up a sizable portion of a modern CPU, they are responsible for a lot of
the complexity of a modern system. Eliminating them from a potential ASIC implementation vastly
decreases R&D costs.

8 Translation Lookaside Buffer
9MemoryManagement Unit

X41D-Sec GmbH PUBLIC Page 24 of 50

RandomXAudit Monero Labs

4.2.4 Conclusion
As such, it is likely possible to implement RandomX as a relatively simple, albeit large in terms of
surface area, VLIWCPUwithout any branch prediction or instruction scheduling logic, which yet
allows for IPC execution rates of RandomX rivaling that of Conventional CPU.
At 400 hashes per second per core on amid-range conventional CPU, the execution speed to beat
is 1677MIPS 10. If we optimistically assume a 4x parallelization factor for our VLIW architecture,
we get a clock speed of 420MHz for meeting this hash speed, per core. This, in addition tomultiple
integer and floating point execution units, a 2MiB on-die cache, and a DRAM controller for a
2GiBDIMM11 is certainly within the available resources on a high-end FPGA (e.g., Xilinx Virtex 7),
provided the design is optimized for FPGAs. However, prices of such FPGAs are $5,000+, which
makes them economically unattractive compared to $100+ CPUs that can runmultiple threads of
RandomX. In addition, such an FPGA-based design would likely have amuch lower IPS-per-watt
rating than a conventional CPU.
Considering the optimizationswe performed here, ASIC feasibility even in a non-high-performance
processes (28nm) is not out of the question. Determining the scale required for this to be economi-
cally viable would needmore careful consideration - either a gate estimation or a full implementa-
tion of the VLIW unit, DRAM controller, cache and execution units. However, implementing these
is within the capability of a small team of experienced engineers, and does not require the the long
experience, industry know-how and contacts of a mainstream conventional CPUmanufacturer like
Intel, ARM or AMD. Even small companies can successfully do commercial tape-outs of advanced
CPUs12.

4.2.4.1 Solution Advice

Solving the lack of reliance on the aforementioned CPU elements is something that has to be
considered carefully. A few solutions come tomind at first:

• increase the utility of a conventional branch predictor by increasing the likelihood of a branch
being taken

• increase data dependency between instructions - this lowers the parallelization factor of
instructions, but also starves execution units of conventional CPUs

• generate more programs and lower their execution count tomake preprocessing less attrac-
tive

10 400*RANDOMX_PROGRAM_SIZE*RANDOMX_PROGRAM_ITERATIONS*RANDOMX_PROGRAM_SIZE
11 Dual InlineMemoryModule
12 https://www.sifive.com/chip-designer#fu540

X41D-Sec GmbH PUBLIC Page 25 of 50

https://www.sifive.com/chip-designer#fu540

RandomXAudit Monero Labs

• consider self-modifying programs, or even dynamic register selection based on execution -
this limits preprocessing, but also JIT

• generatemulti-core programs that share a dataset
• rely on hardware virtualization to exercise features like virtual memory

X41D-Sec GmbH PUBLIC Page 26 of 50

RandomXAudit Monero Labs

4.3 Weaknesses in the Cryptographic Implementations and Al-
gorithms

The following observations are weaknesses in the RandomX implementation and usage of cryp-
tographic algorithms. Due to the design of RandomX, none of them provide a direct threat to the
overall PoW scheme. Nevertheless, they should be checked and potentially fixed to prevent future
vulnerabilities due to yet unknown changes or use cases.

4.3.1 RNDX-PT-19-103: Insecure AesHash1R

Severity: NONE
CWE: None

4.3.1.1 Description

While reviewing the RandomX design it was found that the AesHash1R function is not a cryp-
tographically secure hash function. It is trivial to identify collisions and (second) pre-images in
this function. This is due to the fact that AesHash1R consists of only one AES round (SubBytes,
ShiftRows,MixColumns and roundkey addition). AesHash1R operates block-wise.
For a given block x of input, the function can be described as

statei = MixColumns(ShiftRows(SubBytes(statei−1)))⊕ x.

Assuming i = 1 (i.e., only one block of input) one can directly compute the pre-image

x = state1 ⊕MixColumns(ShiftRows(SubBytes(state0))).

This can be trivially extended to i > 1 by selecting arbitrary statej>0,j<i and solving the resulting
equations. The final steps of AesHash1R consist in encrypting statei with hard-coded round keys.
This operation is directly invertible by applying the reverse transformations.
It should be noted that this property of AesHash1R does not directly impact the security of the
overall RandomX scheme, as an attacker cannot derive aNONCE13 value or other input parameters
of the full algorithm using the above approach. This is due to the fact that RandomX applies a
cryptographically secure hash function to the input parameters prior to applying AesHash1R.
13 Number only used once

X41D-Sec GmbH PUBLIC Page 27 of 50

RandomXAudit Monero Labs

4.3.1.2 Solution Advice

The AesHash1R function should be usedwith care, in particular whenmodifying or extending the
RandomX algorithm. Directly reusing AesHash1R as a replacement for a cryptographically secure
hash function is not advisable.

X41D-Sec GmbH PUBLIC Page 28 of 50

RandomXAudit Monero Labs

4.3.2 RNDX-PT-19-104: Reversible AesGenerator

Severity: NONE
CWE: None

4.3.2.1 Description

While reviewing the design of the AesGenerator functions, it was found that both functionsAes-
Generator1R and AesGenerator4R are trivially reversible. That is, for any desired output of these
functions, the required input can be directly computed. This is due to the fact that both functions
compute one or rounds of AES on their input, using hard-coded round keys. It is not advisable to
use these functions as general-purpose PRNGs. In the context of RandomX, this does not directly
result in an exploitable issues, as it does not allow an attacker to compute a NONCE values or
another input parameter of the overall algorithm due to the fact that such parameters are subject
to a cryptographic hash before they are applied to the AesGenerator functions.

4.3.2.2 Solution Advice

The AesGenerator functions should be usedwith care, in particular whenmodifying or extending
the RandomX algorithm. Directly reusing such functions as a replacement for a cryptographically
secure PRNG14 is not advisable.

14 Pseudo RandomNumber Generator

X41D-Sec GmbH PUBLIC Page 29 of 50

RandomXAudit Monero Labs

4.3.3 RNDX-PT-19-105: Insufficient Diffusion in AesGenerator4R

Severity: NONE
CWE: None

4.3.3.1 Description

While reviewing the design of the AesGenerator4R function, it was found that it uses the same set
of AES keys for the state_0 and state_2 (and state_1 and state_3) slots. This means that in case an
input of the formXYXY (i.e., an input containing repeated blocks at the respective locations) is
provided, the generator will produce identical output values at the respective locations. It should
be noted that in the current design of RandomX this is not a likely event, as the inputs to the
AesGenerator4R function are the result of a cryptographic hash function. However, it should be
noted that AesGenerator4R should not be used as a general-purpose PRNG.

4.3.3.2 Solution Advice

It is recommended tomake use of an individual set of keys for each of the generator state slots.

X41D-Sec GmbH PUBLIC Page 30 of 50

RandomXAudit Monero Labs

4.4 Side Findings and General Observations
The following observations do not have a direct security impact, but are related to security harden-
ing or affect functionality and other topics that are not directly related to security.

4.4.1 RNDX-PT-19-106: Poor Code Coverage

Severity: NONE
CWE: None

4.4.1.1 Description

RandomX has very poor code coverage, apart from end-to-end tests via the benchmark example.

4.4.1.2 Solution Advice

One potentially attractive solution to test RandomX coverage isMutation Testing15. This would
show if there is anymutation in the code base does not yield a change in the output hash - this in
turn would show that some parts of the reference implementation are not exercised during testing.

15 https://en.wikipedia.org/wiki/Mutation_testing

X41D-Sec GmbH PUBLIC Page 31 of 50

https://en.wikipedia.org/wiki/Mutation_testing

RandomXAudit Monero Labs

4.4.2 RNDX-PT-19-107: JIT Memory Pages for Generated Code areWritable
and Executable

Severity: NONE
CWE: None

4.4.2.1 Description

While reviewing thememory allocator used in the JIT compiler (see virtual_memory.cpp and jit_com-
piler_x86.cpp), X41 observed that the memory is allocated with the attributes READ, WRITE and
EXECUTE enabled.

1 void* allocExecutableMemory(std::size_t bytes) {

2 void* mem;

3 #if defined(_WIN32) || defined(__CYGWIN__)

4 mem = VirtualAlloc(nullptr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE);

5 if (mem == nullptr)

6 throw std::runtime_error(getErrorMessage("allocExecutableMemory - VirtualAlloc"));

7 #else

8 mem = mmap(nullptr, bytes, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_ANONYMOUS |

MAP_PRIVATE, -1, 0);↪→

9 if (mem == MAP_FAILED)

10 throw std::runtime_error("allocExecutableMemory - mmap failed");

11 #endif

12 return mem;

13 }

Listing 4.10: Allocation of ExecutableMemory

1 JitCompilerX86::JitCompilerX86() {

2 code = (uint8_t*)allocExecutableMemory(CodeSize);

3 memcpy(code, codePrologue, prologueSize);

4 memcpy(code + epilogueOffset, codeEpilogue, epilogueSize);

5 }

Listing 4.11: JITMemory Allocation

Although the JIT compiler needs write permission to store the generated code and the execute
permission is later required to run it, both permissions are not required to be enabled at the same
time.

X41D-Sec GmbH PUBLIC Page 32 of 50

RandomXAudit Monero Labs

When considering the scenario in which an attacker can write to memory locations, write-and-
executememory pages are usually abused to reliably inject shellcode and execute arbitrary code.
Having read-only access to executable pages has been an important mitigation technique to effec-
tively reduce the impact of security flaws.

4.4.2.2 Solution Advice

X41 strongly recommends the allocation of writable and non-executable pages during the JIT code
generation phase, and subsequently move page protection to execute-and-read access at the code
execution phase (seeVirtualProtect()16 andmprotect()17).

16 https://docs.microsoft.com/en-us/windows/desktop/api/memoryapi/nf-memoryapi-virtualprotect
17 http://man7.org/linux/man-pages/man2/mprotect.2.html

X41D-Sec GmbH PUBLIC Page 33 of 50

https://docs.microsoft.com/en-us/windows/desktop/api/memoryapi/nf-memoryapi-virtualprotect
http://man7.org/linux/man-pages/man2/mprotect.2.html

RandomXAudit Monero Labs

4.4.3 RNDX-PT-19-108: Sandboxing RandomX Execution

Severity: NONE
CWE: None

4.4.3.1 Description

The computation of RandomX effectively requires the execution of randomized programs con-
trolled by an input block and a NONCE. When the input blocks are obtained remotely, as it usually
happens when validating blocks in a blockchain deployment, the RandomX programs executed will
partially be under control of third parties.
We cant́ rule out the existence of certain RandomX programs that are able to bypass the security
boundaries of the RandomX VM18 when certain conditions are met. Even though we have not
identified such programs, exploitable security flaws could be identified in the future. In such
situation, an attacker could be able to supply certain blocks that, when hashed, exploit the security
flaw.

4.4.3.2 Solution Advice

Considering the expressiveness of the RandomX virtual machine and taking into account that the
computation is controlled by third parties, X41 recommends implementing sandboxing techniques
to isolate the execution of the RandomX programs. Technologies like AppContainer and seccomp
can effectively mitigate the impact of an attacker when trying to exploit security flaws in the
sandboxed components.

18 VirtualMachine

X41D-Sec GmbH PUBLIC Page 34 of 50

RandomXAudit Monero Labs

4.4.4 RNDX-PT-19-109: Incorrect SuperScalarHash Latency when Program
Size is too Small

Severity: NONE
CWE: None

4.4.4.1 Description

While testing RandomX with non-default parameters, X41 identified a misbehavior when RAN-
DOMX_SUPERSCALAR_MAX_SIZE value is too small to fit enough instructions to satisfy RANDOM-
X_SUPERSCALAR_LATENCY.
Whenwe set RANDOMX_SUPERSCALAR_LATENCY to 170 and RANDOMX_SUPERSCALAR_MAX_SIZE to 1,
it is expected that the proposed latency wont́ be achieved because of a SuperScalar program size
too small. Instead of failing with an error indicating that the requested latency cant́ be achieved,
SuperScalarHash and RandomXwere executedwithout any error message.
Even though the value we used for RANDOMX_SUPERSCALAR_MAX_SIZE is artificially small, this sit-
uation would still apply with any other combination of parameters, and the user wouldt́ know if
SuperScalarHash satisfies the requested latency during the data set generation.

4.4.4.2 Solution Advice

X41 advises to implement additional sanity checks, making sure the combination of parameters
supplied to RandomX are sane and failing with a meaningful error when any of the requested
parameters cant́ be satisfied.

X41D-Sec GmbH PUBLIC Page 35 of 50

RandomXAudit Monero Labs

4.4.5 RNDX-PT-19-110: Lack ofMachine Readable Specification

Severity: NONE
CWE: None

4.4.5.1 Description

Currently, RandomX is defined by a human-readable markdown document of the architecture
that accompanies the code base. The specification is not explicitly versioned, machine parsable,
guaranteed to be up to date in comparison to the implementation or even valid at all. The reference
implementation of RandomX consists of at least two separate VM execution/compilation engines,
and those are only tested against a reference result in a ’benchmark’ test binary.
As RandomX is a candidate for a Proof-of-Work algorithm inMonero, such a specification is indis-
pensable. RandomX is otherwise likely run into the ’Bitcoin Core problem’, where any change to the
code (from bug fix to refactor) is pushed back because of the possibility of unknowingly breaking
backwards compatibility - and thus causing a fork in a blockchain. In addition, such a fork might
happenwhen an alternative, surface-level-only tested reimplementation of RandomX becomes
popular, and after some point manages to be exercised to the point of showing a difference in them.
The current test-against-golden-reference does not guarantee any exhaustiveness and is only a
simple end-to-end integration test of the entire code base.
In addition to verification of implementations, a formal model of the VM instruction set could be
used to prove certain difficult to reason about properties of the VM, such as that that there are no
infinite loops or that there exist some particular access patterns to different micro-architectural
components and execution units, without having to write statistical tests on the generated instruc-
tions.

4.4.5.2 Solution Advice

While formally proving the conformity of a C++ JIT engine and its output against a specification
of a CPU is not necessarily trivial, there are several easy steps to take in order to have at least a
machine-readable model and a CPU implementation stemming from such amodel.
One entry-level approachwould consist of the following:

• a declarative, high-level, machine readable specification of the RandomX ISA
• an interpreter generated from the specification, used as the source of truth for generating
’golden’ test results for a given program (not seed)

X41D-Sec GmbH PUBLIC Page 36 of 50

RandomXAudit Monero Labs

• multiple golden test results (order of a few thousand) stored inmachine-parsable format
• a continuously running test of all ’production’ implementations against the golden test results

X41D-Sec GmbH PUBLIC Page 37 of 50

RandomXAudit Monero Labs

5 About
The following companies and individuals participated in this audit:

5.1 X41D-Sec GmbH
X41D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Review of theMozilla Firefox updater1
• X41 Browser SecurityWhite Paper2
• Review of Cryptographic Protocols (Wire)3
• Identification of flaws in FaxMachines45
• SmartCard Stack Fuzzing6

The testers at X41 have extensive experiencewith penetration testing and red teaming exercises in
complex environments. This includes enterprise environments with thousands of users and vendor
infrastructures such as theMozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong technical
1 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
2 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
3 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
4 https://www.x41-dsec.de/lab/blog/fax/
5 https://2018.zeronights.ru/en/reports/zero-fax-given/
6 https://www.x41-dsec.de/lab/blog/smartcards/

X41D-Sec GmbH PUBLIC Page 38 of 50

https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

RandomXAudit Monero Labs

background and performs security reviews of complex and high-profile applications such as Google
Chrome andMicrosoft Edgeweb browsers.
X41D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

5.2 Serge Bazanski
Serge Bazanski is a hardware and embedded security consultant with over five years of experience.
Notable works include:

• Speaker at REcon Brussels 2018 (Hacking Toshiba Laptops)
• BootROMextraction from Tegra X1
• work on open source FPGA toolchains (yosys, nextpnr)
• reverse engineering of Siglent oscilloscopes and continued development of open bitstream7

5.3 Secfault Security GmbH
Secfault Security GmbH is an independent IT security consulting company, founded in 2016. Our
aim is to support our customers in securing their implementations, strengthening their designs and
in evaluating the security aspects of IT solutions. The companywas founded byDirk Breiden and
Gregor Kopf, whoworked at Recurity Labs GmbH prior to founding Secfault Security.
Secfault Security has a strong connection the IT security scene. We are in active exchange with the
community and have a network of experts in different areas in IT security (from hardware analyses
to compliance).

5.3.1 Focus Areas
Secfault Security offers a broad spectrum of experience and expertise. Several areas in IT security
are covered, including but not limited to:

• Source Code Reviews:
– Java, JavaScript, C, C++, Python, Perl, Ruby, Haskell, etc.

7 https://github.com/360nosc0pe

X41D-Sec GmbH PUBLIC Page 39 of 50

https://x41-dsec.de
mailto:info@x41-dsec.de
https://github.com/360nosc0pe

RandomXAudit Monero Labs

– Experience with common frameworks and technologies (such as SpringMVC, Ruby on
Rails etc.)

• Analysis of embedded systems from both, a software and a hardware point of view
• Reverse Engineering:

– All major CPU architectures (ARM, X86/64,MIPS, PPC, etc.)
• Cryptographic Tasks:

– From protocol design to the implementation of cryptographic attacks
• Web Application Penetration Testing
• Network Penetration Testing

Secfault Security has a strong technical focus. Our goal is not only to identify vulnerabilities, but
also to propose practical solutions and improvements. One of our core strengths is our ability to
easily familiarize ourselves with complex systems, to dig deep into their implementation and to
identify non-standard vulnerabilities and potential solution approaches.

X41D-Sec GmbH PUBLIC Page 40 of 50

RandomXAudit Monero Labs

Acronyms
AES Advanced Encryption Standard . 9
ASIC Application-Specific Integrated Circuit . 7
CMOS Complementarymetal-oxide-semiconductor . 7
CPU Central Processing Unit . 18
CWE CommonWeakness Enumeration . 8
DIMM Dual InlineMemoryModule . 25
DRAM Dynamic Random-AccessMemory . 18
FPGA Field Programmable Gate Array . 7
IPC Instruction per Clock . 20
ISA Instruction Set Architecture . 20
JIT Just In Time . 9
NONCE Number only used once . 27
PoW Proof-of-Work . 6
PRNG Pseudo RandomNumber Generator . 29
TLB Translation Lookaside Buffer . 24
VLIW Very Long InstructionWord . 7
VLSI Very Large Scale Integration . 7
VM VirtualMachine . 34
MMU MemoryManagement Unit . 24

X41D-Sec GmbH PUBLIC Page 41 of 50

RandomXAudit Monero Labs

A Parallelizer
1 import math

2 import random

3 import sys

4

5 # from src/configuration.h

6 weights = {

7 'RANDOMX_FREQ_IADD_RS': 25,

8 'RANDOMX_FREQ_IADD_M': 7,

9 'RANDOMX_FREQ_ISUB_R': 16,

10 'RANDOMX_FREQ_ISUB_M': 7,

11 'RANDOMX_FREQ_IMUL_R': 16,

12 'RANDOMX_FREQ_IMUL_M': 4,

13 'RANDOMX_FREQ_IMULH_R': 4,

14 'RANDOMX_FREQ_IMULH_M': 1,

15 'RANDOMX_FREQ_ISMULH_R': 4,

16 'RANDOMX_FREQ_ISMULH_M': 1,

17 'RANDOMX_FREQ_IMUL_RCP': 8,

18 'RANDOMX_FREQ_INEG_R': 2,

19 'RANDOMX_FREQ_IXOR_R': 15,

20 'RANDOMX_FREQ_IXOR_M': 5,

21 'RANDOMX_FREQ_IROR_R': 10,

22 'RANDOMX_FREQ_IROL_R': 0,

23 'RANDOMX_FREQ_ISWAP_R': 4,

24 'RANDOMX_FREQ_FSWAP_R': 8,

25 'RANDOMX_FREQ_FADD_R': 20,

26 'RANDOMX_FREQ_FADD_M': 5,

27 'RANDOMX_FREQ_FSUB_R': 20,

28 'RANDOMX_FREQ_FSUB_M': 5,

29 'RANDOMX_FREQ_FSCAL_R': 6,

30 'RANDOMX_FREQ_FMUL_R': 20,

31 'RANDOMX_FREQ_FDIV_M': 4,

32 'RANDOMX_FREQ_FSQRT_R': 6,

33 'RANDOMX_FREQ_CBRANCH': 16,

34 'RANDOMX_FREQ_CFROUND': 1,

35 'RANDOMX_FREQ_ISTORE': 16,

36 'RANDOMX_FREQ_NOP': 0,

37 }

38

39 # from src/vm_interpreted.cpp, InterpretedVm::precompileProgram

X41D-Sec GmbH PUBLIC Page 42 of 50

RandomXAudit Monero Labs

40 instructions = [

41 'IADD_RS',

42 'IADD_M',

43 'ISUB_R',

44 'ISUB_M',

45 'IMUL_R',

46 'IMUL_M',

47 'IMULH_R',

48 'IMULH_M',

49 'ISMULH_R',

50 'ISMULH_M',

51 'IMUL_RCP',

52 'INEG_R',

53 'IXOR_R',

54 'IXOR_M',

55 'IROR_R',

56 'IROL_R',

57 'ISWAP_R',

58 'FSWAP_R',

59 'FADD_R',

60 'FADD_M',

61 'FSUB_R',

62 'FSUB_M',

63 'FSCAL_R',

64 'FMUL_R',

65 'FDIV_M',

66 'FSQRT_R',

67 'CBRANCH',

68 'CFROUND',

69 'ISTORE',

70 'NOP',

71]

72

73 assert len(weights) == len(instructions) == 30

74

75 # construct decoder matrix

76 decoder = {}

77 counter = 0

78 for i in instructions:

79 w = weights['RANDOMX_FREQ_' + i]

80 for j in range(w):

81 decoder[counter] = i

82 counter += 1

83

84 assert list(decoder.keys()) == list(range(256))

85

86 program_size = 256 # in instructions

87 instruction_size = 8 # in bytes

88

89

90 class Instruction:

91 def __init__(self, w):

X41D-Sec GmbH PUBLIC Page 43 of 50

RandomXAudit Monero Labs

92 # specs.md, 5.1 - Instruction Encoding

93 self.word = w

94 self.mnem = decoder[w & 0xff]

95 self.dst = (w >> 8) & 0xff

96 self.src = (w >> 16) & 0xff

97 self.mod = (w >> 24) & 0xff

98 self.imm32 = (w >> 32) & 0xffffffff

99

100 self.target = None

101 self.istarget = False

102

103 if self.mnem.startswith('I') or self.mnem == 'CBRANCH':

104 self.dst &= 0b111

105 self.src &= 0b111

106 elif self.mnem == 'FSWAP_R':

107 self.dst &= 0b111

108 elif self.mnem.startswith('F'):

109 self.dst &= 0b11

110 if self.mnem.endswith('_M'):

111 self.src &= 0b111

112 else:

113 self.src &= 0b11

114

115 def modifies_register(self):

116 if not self.mnem.startswith('I'):

117 return None

118

119 intdst = 'r{}'.format(self.dst)

120

121 if self.mnem == 'IMUL_RCP':

122 # if zero

123 if self.imm32 == 0:

124 return None

125 # if power of 2

126 if (self.imm32 & (self.imm32 - 1)) == 0:

127 return None

128 return intdst

129 if self.mnem == 'ISWAP_R':

130 if self.dst == self.src:

131 return None

132 return intdst

133

134 return intdst

135

136 def deps(self):

137 sources = []

138 dests = []

139

140 def s(v):

141 sources.append(v)

142 def d(v):

143 dests.append(v)

X41D-Sec GmbH PUBLIC Page 44 of 50

RandomXAudit Monero Labs

144 def rr(r):

145 return 'r{}'.format(r)

146 def rf(r):

147 return 'f{}'.format(r)

148 def re(r):

149 return 'e{}'.format(r)

150 def ra(r):

151 return 'a{}'.format(r)

152 def rfe(r):

153 if r < 4:

154 return 'f{}'.format(r)

155 else:

156 return 'e{}'.format(r-4)

157

158 m = self.mnem

159

160 if m == 'IADD_RS':

161 d(rr(self.dst))

162 if self.src == self.dst:

163 s(rr(self.dst))

164 else:

165 s(rr(self.src))

166 elif m in ('IADD_M', 'ISUB_M', 'IMUL_M', 'IMULH_M', 'ISMULH_M', 'IXOR_M'):

167 d(rr(self.dst))

168 s('m')

169 if self.src != self.dst:

170 s(rr(self.src))

171 elif m in ('ISUB_R', 'IMUL_R', 'IXOR_R', 'IROL_R', 'IROR_R'):

172 d(rr(self.dst))

173 if self.src != self.dst:

174 s(rr(self.src))

175 elif m in ('IMULH_R', 'ISMULH_R', 'ISWAP_R'):

176 d(rr(self.dst))

177 if self.src == self.dst:

178 s(rr(self.dst))

179 else:

180 s(rr(self.src))

181 elif m in ('IMUL_RCP', 'INEG_R'):

182 d(rr(self.dst))

183 s(rr(self.dst))

184 elif m == 'FSWAP_R':

185 d(rfe(self.dst))

186 s(rfe(self.dst))

187 elif m.startswith('F') and m.endswith('_R'):

188 d(ra(self.src))

189 if m in ('FMUL_R', 'FSQRT_R'):

190 s(re(self.dst))

191 d(re(self.dst))

192 else:

193 s(rf(self.dst))

194 d(rf(self.dst))

195 elif m.startswith('F') and m.endswith('_M'):

X41D-Sec GmbH PUBLIC Page 45 of 50

RandomXAudit Monero Labs

196 s('m')

197 s(rr(self.src))

198 if m == 'FDIV_M':

199 s(re(self.dst))

200 d(re(self.dst))

201 else:

202 d(rf(self.dst))

203 d(rf(self.dst))

204 elif m == 'ISTORE':

205 s(rr(self.src))

206 d('m')

207 else:

208 raise Exception("Unhandled instruction {}".format(m))

209

210 return sources, dests

211

212

213 def __repr__(self):

214 if self.mnem == 'CBRANCH' and self.target is not None:

215 return 'CBRANCH r{}, {:02x} ({:x})'.format(self.dst, self.target, self.imm32)

216

217 if self.mnem.startswith('I'):

218 return '{} r{}, r{}'.format(self.mnem, self.dst, self.src)

219 if self.mnem == 'FSWAP_R':

220 if self.dst < 4:

221 r = 'f{}'.format(self.dst)

222 else:

223 r = 'e{}'.format(self.dst-4)

224 return '{} {}, {}'.format(self.mnem, r, r)

225 if self.mnem in ('FADD_R', 'FSUB_R'):

226 return '{} f{}, f{}, a{}'.format(self.mnem, self.dst, self.dst, self.src)

227 if self.mnem in ('FADD_M', 'FSUB_M'):

228 return '{} f{}, f{}, mem[r{}+{}]'.format(self.mnem, self.dst, self.dst, self.src,

self.imm32)↪→

229 if self.mnem == 'FSCAL_R':

230 return '{} f{}, f{}'.format(self.mnem, self.dst, self.dst)

231 if self.mnem == 'FMUL_R':

232 return '{} e{}, e{}, a{}'.format(self.mnem, self.dst, self.dst, self.src)

233 if self.mnem == 'FDIV_M':

234 return '{} e{}, e{}, mem[r{}+{}]'.format(self.mnem, self.dst, self.dst, self.src,

self.imm32)↪→

235 return self.mnem

236

237

238 class Macro:

239 def __init__(self, program):

240 self.insns = []

241 self.program = program

242

243 def render(self):

244 sys.stdout.write(' | ')

245 flops = 0

X41D-Sec GmbH PUBLIC Page 46 of 50

RandomXAudit Monero Labs

246 iops = 0

247 mops = 0

248 srcs = []

249 dsts = []

250 for addr in self.insns:

251 sys.stdout.write('{:02x} '.format(addr))

252 insn = self.program[addr]

253

254 if not insn.mnem.startswith('C'):

255 s, d = insn.deps()

256 srcs += s

257 dsts += d

258

259 if insn.mnem.startswith('I'):

260 iops += 1

261 if insn.mnem.startswith('F'):

262 flops += 1

263 if insn.mnem.endswith('_M'):

264 mops += 1

265

266 sys.stdout.write(' ' * (80 - len(self.insns)*3))

267 sys.stdout.write('| {:2d} FP, {:2d} ALU, {:2d} MEM '.format(flops, iops, mops))

268

269 if srcs != [] and dsts != []:

270 srcs = sorted(srcs)

271 dsts = sorted(dsts)

272 sys.stdout.write('| srcs {}, dsts {}'.format(', '.join(srcs), ', '.join(dsts)))

273 else:

274 sys.stdout.write('|')

275 sys.stdout.write('\n')

276 sys.stdout.flush()

277

278 class BasicBlock:

279 def __init__(self, program, addr):

280 self.program = program

281 self.start = addr

282 self.end = addr

283 self.insns = []

284

285 def consume(self):

286 addr = self.start

287 while True:

288 if addr >= len(self.program):

289 self.end = addr

290 return addr

291

292 ins = self.program[addr]

293 if ins.mnem in ('CBRANCH', 'CFROUND') or ins.istarget:

294 # cbranch/cfround is part of end basic block - ie, block points at itself

295 self.end = addr + 1

296 return self.end

297

X41D-Sec GmbH PUBLIC Page 47 of 50

RandomXAudit Monero Labs

298 addr += 1

299

300 def render(self):

301 print('BasicBlock {:02x}-{:02x}'.format(self.start, self.end))

302 for i in range(self.start, self.end):

303 target = 'T' if self.program[i].istarget else ' '

304 print(' {:02x} | {:016x} | {} | {}'.format(i, self.program[i].word, target,

self.program[i]))↪→

305 print()

306

307 def threads(self):

308 """Returns threads of execution that can be ran in parallel."""

309 print("Parallelized BasicBlock {:02x}-{:02x}".format(self.start, self.end))

310

311 valid = ['m',] + \

312 ['r{}'.format(r) for r in range(8)] + \

313 ['f{}'.format(r) for r in range(4)] + \

314 ['e{}'.format(r) for r in range(4)] + \

315 ['a{}'.format(r) for r in range(4)]

316

317 macros = [Macro(self.program)]

318 used = {}

319

320 for addr in range(self.start, self.end-1):

321 sources, dests = self.program[addr].deps()

322 for s in sources + dests:

323 if s not in valid:

324 raise Exception("Invalid dependency {}".format(s))

325

326 s_newest_macro = -1

327 for s in sources:

328 if s not in used:

329 continue

330 if used[s] > s_newest_macro:

331 s_newest_macro = used[s]

332

333 if s_newest_macro+1 == len(macros):

334 macros.append(Macro(self.program))

335

336 macros[s_newest_macro+1].insns.append(addr)

337

338 for d in dests:

339 used[d] = s_newest_macro+1

340

341 if self.end-self.start > 1:

342 macros.append(Macro(self.program))

343 macros[-1].insns.append(self.end-1)

344

345 for m in macros:

346 m.render()

347

348 print()

X41D-Sec GmbH PUBLIC Page 48 of 50

RandomXAudit Monero Labs

349

350 return macros

351

352 class Tracer:

353 def __init__(self, program):

354 self.program = program

355 self.reg = {}

356 # mark lack of last use by None

357 for r in range(8):

358 self.reg['r{}'.format(r)] = None

359 for a in range(4):

360 self.reg['a{}'.format(a)] = None

361 for f in range(4):

362 self.reg['f{}'.format(a)] = None

363 for e in range(4):

364 self.reg['e{}'.format(a)] = None

365

366 self._calculate_branch_targets()

367

368 def _calculate_branch_targets(self):

369 regUsed = {}

370 for addr, p in enumerate(self.program):

371 if p.mnem == 'CBRANCH':

372 used = regUsed.get('r{}'.format(p.dst), -1)

373 p.target = used + 1

374 if used >= 0:

375 self.program[used].istarget = True

376

377 # mark all registers as used

378 for r in range(8):

379 regUsed['r{}'.format(r)] = addr

380 continue

381 else:

382 modifies = p.modifies_register()

383 if modifies is None:

384 continue

385 regUsed[modifies] = addr

386

387 def basic_blocks(self):

388 bbs = [BasicBlock(self.program, 0)]

389 while True:

390 end = bbs[-1].consume()

391 if end >= len(self.program):

392 return bbs

393 bbs.append(BasicBlock(self.program, end))

394 return bbs

395

396 def run():

397 # build random program (not crypto random, but this should be good enough for analysis)

398 program_bytes = [random.choice(range(256)) for _ in range(program_size * instruction_size)]

399

400 # convert to program words

X41D-Sec GmbH PUBLIC Page 49 of 50

RandomXAudit Monero Labs

401 program_words = []

402 for i in range(program_size):

403 b = program_bytes[i*instruction_size:(i+1)*instruction_size]

404 w = 0

405 for bb in b:

406 w = (w << 8) | bb

407 program_words.append(w)

408

409 # convert to program instructions

410 program = []

411 for addr, w in enumerate(program_words):

412 program.append(Instruction(w))

413

414 t = Tracer(program)

415 bb = t.basic_blocks()

416

417 macros = []

418 for bbb in bb:

419 bbb.render()

420 macros += bbb.threads()

421

422 print('Parallelized program:')

423 for m in macros:

424 m.render()

425

426 print(' Program instructions: {}'.format(len(program)))

427 print('Parallelized instructions: {}'.format(len(macros)))

428 print(' Speedup: {:.2f}x'.format(len(program)/float(len(macros))))

429

430 run()

Listing A.1: Parallelizer

X41D-Sec GmbH PUBLIC Page 50 of 50

	Executive Summary
	Introduction
	Findings Overview
	Scope
	Recommended Further Tests

	Rating Methodology
	Results
	Findings
	RNDX-PT-19-01
	RNDX-PT-19-02
	RNDX-PT-19-03
	RNDX-PT-19-04

	Feasibility of Implementing RandomX in Hardware
	RNDX-PT-19-100
	RNDX-PT-19-101
	RNDX-PT-19-102
	Conclusion

	Weaknesses in the Cryptographic Implementations and Algorithms
	RNDX-PT-19-103
	RNDX-PT-19-104
	RNDX-PT-19-105

	Side Findings and General Observations
	RNDX-PT-19-106
	RNDX-PT-19-107
	RNDX-PT-19-108
	RNDX-PT-19-109
	RNDX-PT-19-110

	About
	X41 D-Sec GmbH
	Serge Bazanski
	Secfault Security GmbH
	Focus Areas

	Parallelizer

