
Source Code Audit on libcap
for Open Source Technology Improvement Fund (OSTIF)

Final Report and Management Summary

2023-05-10

X41 D-SEC GmbH
Krefelder Str. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

Revision Date Change Author(s)

1 2023-04-14 Final Report Draft MSc. H. Moesl, Dipl.-Ing. D. Gstir, R.
Weinberger, and M. Vervier

2 2023-05-10 ReportMarked For Pub-
lication

M. Vervier

X41 D-Sec GmbH PUBLIC Page 1 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

Contents

1 Executive Summary 4
1.1 Findings Overview . 6

2 Introduction 7
2.1 Scope . 7
2.2 Coverage . 8
2.3 Recommended Further Tests . 10

3 Rating Methodology for Security Vulnerabilities 11
3.1 Common Weakness Enumeration . 12

4 Results 13
4.1 Findings . 14
4.2 Informational Notes . 18

5 About X41 D-Sec GmbH 21

A Fuzzing Harnesses 23
A.1 CLI Fuzzing of Tools capsh . 23
A.2 CLI Fuzzing of Tools getcap, setcap, getpcaps . 24
A.3 Fuzzing Harness for cap_copy_int, cap_from_text, cap_to_text, cap_from_name . . 24
A.4 Other Test Harnesses . 27

X41 D-Sec GmbH PUBLIC Page 2 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

Dashboard

Target
Customer Open Source Technology Improvement Fund (OSTIF)
Name libcap
Type Source Code
Version commit (5496a0e3854dba9374823e9b561ee8c5fd9c59f4)
Engagement
Type Source Code Audit
Consultants 3: MSc. H. Moesl, Dipl.-Ing. D. Gstir, and R. Weinberger
Engagement Effort 15 person-days, 2023-03-17 to 2023-04-12
Total issues found 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

None - 3

Low - 1

Medium - 1

High - 0

Critical - 0

CWE-401 (1)CWE-190 (1)

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

X41 D-Sec GmbH PUBLIC Page 3 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

1 Executive Summary

In March and April 2023, X41 D-Sec GmbH performed a source code audit against libcap to
identify security vulnerabilities. The test was made possible by the Open Source Technology
Improvement Fund1.
A total of two vulnerabilities were discovered during the audit by X41. None were rated as having
a critical or high severity, one as medium, and one as low. Additionally, three issues without a
direct security impact were identified.

Low - 1 Medium - 1

Figure 1.1: Issues and Severity
libcap is a library for getting and setting POSIX.1e (formerly POSIX 6) draft 15 capabilities, with
natively supported languages of C/C++ and Go. As it is common for compiled languages, a par-
ticular focus has been placed on the identification of typical memory safety issues such as buffer
overflows, memory disclosure, or use-after-free. Furthermore, the testing team put focus and ef-
fort into the identification of logic vulnerabilities such as disagreement between kernel and libcap

1 https://ostif.org

X41 D-Sec GmbH PUBLIC Page 4 of 28

https://ostif.org

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

shadow state.
In a source code audit, the testers receive all available information about the target. The test was
performed by three experienced security experts between 2023-03-17 and 2023-04-12.
Despite multiple auditors independently reviewing the same section of the code for better cover-
age, only two vulnerabilities have been identified during the review process. Therefore, address-
ing these vulnerabilities can add an additional layer of defense and help reduce the potential
attack surface of the library.
To further improve the security posture, it is encouraged to implement additional security con-
trols, which have been listed as part of the Informational Notes list. These describe potential
improvements with regards to code safety which make exploiting potential bugs harder.
It is worth emphasizing that the libcap library was put through rigorous testing by X41’s team
and, overall, it was found to be highly robust and secure. The testing process revealed that the
libcap is designed and implemented with great care and attention to detail, and it demonstrated
a strong ability to withstand scrutiny. As a result, the overall impression and outcome of this
security assessment is very positive.
Again, it must be reiterated that this assessment provided valuable insights into the security pos-
ture at the time of testing, but it is important to note that any penetration test is unable to guar-
antee that the software complex is free of additional bugs.
In terms of dynamic testing, the testing team developed several fuzz testing harnesses. Fuzz
testing is, in general, essential for the overall security of the libcap project, especially since it is
implemented in C, which is often prone to memory corruption vulnerabilities. For the purpose of
this test, code coverage driven fuzzing using AFL++ in combination with address space sanitizers
(such as ASAN) has been performed. Even though no new issues were identified using the devel-
oped harnesses, it is highly recommended to incorporate the developed harnesses into the libcap
project and to make fuzzing a fixed part of the libcap, either using AFL++ or libFuzzer, resulting
in better testing coverage.

X41 D-Sec GmbH PUBLIC Page 5 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

1.1 Findings Overview

DESCRIPTION SEVERITY ID REF
Memory Leak onfunc pthread_create() Error LOW LCAP-CR-23-01 4.1.1
Integer Overflow infunc _libcap_strdup() MEDIUM LCAP-CR-23-02 4.1.2
Missing Check offunc pam_set_data() Return Code NONE LCAP-CR-23-100 4.2.1
Missing Permission Check of User Capability File NONE LCAP-CR-23-101 4.2.2
Problematic Usage of exttt pthread_kill() NONE LCAP-CR-23-102 4.2.3

Table 1.1: Security-Relevant Findings

X41 D-Sec GmbH PUBLIC Page 6 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

2 Introduction

The assessment comprised a security review of the libcap library, utilizing static source code anal-
ysis as well as dynamic testing using dedicated fuzz testing harnesses. The branch in scope for this
inspectionwas themain branchwith the commit id5496a0e3854dba9374823e9b561ee8c5fd9c59f4.
At the beginning of the project, an initial kick-offmeeting was set up between X41, OSTIF and the
maintainer of the library in order to to align on the scope of this engagement. The meeting helped
to clarify the expectations of this assessment and also narrowed down the key focus areas.
Since the testing team had a clear understanding of the scope and goals, X41 did not need to
interact extensively with OSTIF or the maintainer. However, the communication was excellent,
and help was provided whenever requested. Generally speaking, OSTIF as well as the maintainer
of the library deserve a lot of praise for their overall support and assistance. It was a pleasure for
the testing team working with them.
From a programming style and software design perspective the code and design is clean and very
well written, with security in mind.

2.1 Scope

During the kickoff call, the audit team, in collaboration with OSTIF and the maintainer, defined
and narrowed down the scope of the testing efforts. It was mutually agreed that the primary
focus for libcap would be on conducting in-depth static code analysis and incorporating fuzzing
support for various functions of interest.
In addition to that, the assessment focused a general examination for typical memory corruption
vulnerabilities.

X41 D-Sec GmbH PUBLIC Page 7 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

2.2 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.
Amanual approach for code review is used by X41. This process was combinedwith fuzzing given
the nature of libcap being exposed to parsing of potentially untrustworthy data.
The time allocated to X41 for this code review was sufficient to yield a reasonable coverage of
the given scope.

2.2.1 Fuzzing

While conducting a source audit of the libcap library it was observed that the project did not
include any fuzz tests. As a result, our team decided to focus on fuzzing as a critical aspect of our
testing efforts.
For the fuzzing efforts, AFL++1 was used in two ways / modes:

1. argv (command-line) fuzzing of the libcap tools utilizing AFL++ persistent mode
2. Fuzzing of selected interesting looking functions of libcap utilizing AFL++ persistent mode

Persistent mode fuzzing is a feature in the AFL++ fuzzer that keeps the target program running in
the background and continuously feeds it with new test cases. This is in contrast to the default
"one-shot" mode in which the fuzzer launches the target program with each new test case. By
utilizing this approach, it was possible to achieve execution speed improvements of 10 to 20 times.
Moreover, AFL++ has recently incorporated support for command-line interface (CLI) fuzzing in
persistent mode through the AFL_INIT_ARGV_PERSISTENT macro, rendering it an ideal choice for
the CLI fuzzing of libcap.

2.2.1.1 Fuzzing Hardware

The fuzzing process was carried out on a system equipped with an AMD Ryzen Threadripper
Processor, which boasts 64 cores and 128GB of RAM.

1 https://github.com/AFLplusplus/AFLplusplus/

X41 D-Sec GmbH PUBLIC Page 8 of 28

https://github.com/AFLplusplus/AFLplusplus/

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

2.2.1.2 CLI Fuzzing

Considering that libcap comprises various tools, such as capsh, getcap, setcap and getpcaps, as
a component of its code base, X41, decided to conduct command-line interface (CLI) fuzzing
against these tools to detect any bugs associated with the parsing of argv parameters.
To conduct CLI fuzzing on each of the aforementioned tools, X41 generated a valid set of CLI
parameters and utilized them as input test cases for the fuzzer. Additionally, X41 built the code
base with address sanitization enabled (-fsanitize=address) to detect any memory management
errors. To facilitate the fuzzer in quickly finding valid CLI parameters, X41 configured the AFL++
compiler to create a dictionary using the AFL_LLVM_DICT2FILE flag based on the compiled C code.
As a final measure, it was necessary to perform fuzzing within a containerized environment. This
was important to prevent any changes to capabilities resulting from the fuzzing process that could
leave the host machine in an unknown or compromised state.
The fuzzer executed each of the aforementioned tools for a total of approximately 5 billion times.
Despite the extensive number of executions, X41 was unable to identify any immediate crashes.
Given that it can be concluded that the code base for these tools and libcap is well tested and
writtenwith security inmind, at least under the conditions and parameterswe used for the fuzzing
process.
However, it is worth noting that the absence of immediate crashes does not necessarily imply
that the code is free from bugs or vulnerabilities.

2.2.1.3 Fuzzing Selected Functions

During this project, X41 discovered additional noteworthy functions that were not included in
the fuzzing efforts of OSS-Fuzz and created dedicated fuzzing harnesses:

• Functions working on external capability representation:
– cap_copy_int

– cap_copy_int_check

• Functions doing string manipulation:
– cap_to_text

– cap_from_text

– cap_from_name

• Other interesting functions:

X41 D-Sec GmbH PUBLIC Page 9 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

– read_capabilities_for_user

The folders tests/fuzzinput and tests/fuzznames already contained input test cases provided by
OSS-Fuzz, which were utilized as a starting point for generating test cases using the radamsa
tool2. X41 compiled the source code base with address sanitization enabled (-fsanitize=address).
The fuzzing harnesses executed each of the aforementioned functions approximately 3 billion
times, but no memory memory corruptions or crashes were detected during this process.
Fuzzing the function are_se_sortlist resulted in multiple crashes.

2.3 Recommended Further Tests

X41 recommends to subject all newly developed code to regular source code audits.
Due to the widespread usage of libcap, it is encouraged to perform recurring security audits as
it has already been performed in the past, because new vulnerabilities may be introduced as
more features are added and also changes within one part of the system may have unintentional
security impact to other parts.

2 https://gitlab.com/akihe/radamsa

X41 D-Sec GmbH PUBLIC Page 10 of 28

https://gitlab.com/akihe/radamsa

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for Open Source Technology Improvement
Fund (OSTIF) are beyond the scope of a penetration test which focuses entirely on technical
factors. Yet technical results from a penetration test may be an integral part of a general risk
assessment. A penetration test is based on a limited time frame and only covers vulnerabilities
and security issues which have been found in the given time, there is no claim for full coverage.
In total, five different ratings exist, which are as follows:

Severity Rating
None
Low

Medium
High
Critical

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.
Findings with the rating ‘none’ are called side findings and are related to security hardening, af-
fect functionality, or other topics that are not directly related to security. X41 recommends to
mitigate these issues as well, because they often become exploitable in the future. Doing so will
strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH PUBLIC Page 11 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

3.1 CommonWeakness Enumeration

The CWE1 is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.
CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration2 https://www.mitre.org

X41 D-Sec GmbH PUBLIC Page 12 of 28

https://cwe.mitre.org/
https://www.mitre.org

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

X41 D-Sec GmbH PUBLIC Page 13 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 LCAP-CR-23-01: Memory Leak on pthread_create() Error

Severity: LOW
CWE: 401 – Improper Release of Memory Before Removing Last Reference

(’Memory Leak’)
Affected Component: libcap/psx/psx.c:__wrap_pthread_create()

4.1.1.1 Description

X41 found that the error handling in __wrap_pthread_create() function is wrong andwill leak mem-
ory in case of an error.
Function libpsx hooks the pthread_create() function and replaces it with __wrap_pthread_create().
Thiswrapping functionwill then register the required signal handler and call the actual pthread_create()
(__real_pthread_create()). Here, the error handling for __real_pthread_create() is faulty as it checks
for a negative return value which cannot happen. Instead, pthread_create() will return a value
> 0 in case of an error1. Thus, for every error in __real_pthread_create() where the tread routine
(_psx_start_fn) is not called, the buffer starterwill not be freed and thus this memory will be leaked
once __wrap_pthread_create() returns.
A malicious actor who is in the position to cause __real_pthread_create() to return an error, can
potentially abuse this to exhaust the process memory. As libpsx hooks all pthread_create() calls
of a process, this affects every thread.

1 *
2 * __wrap_pthread_create is the wrapped destination of all regular
3 * pthread_create calls.
4 */
5 int __wrap_pthread_create(pthread_t *thread, const pthread_attr_t *attr,
6 void *(*start_routine) (void *), void *arg) {
7 psx_starter_t *starter = calloc(1, sizeof(psx_starter_t));
8

9 // [...]

1 https://man7.org/linux/man-pages/man3/pthread_create.3.html

X41 D-Sec GmbH PUBLIC Page 14 of 28

https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://man7.org/linux/man-pages/man3/pthread_create.3.html

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

10

11 int ret = __real_pthread_create(thread, attr, _psx_start_fn, starter);
12 if (ret == -1) {
13 psx_new_state(_PSX_CREATE, _PSX_IDLE);
14 memset(starter, 0, sizeof(*starter));
15 free(starter);
16 } /* else unlock happens in _psx_start_fn */
17

18 /* the parent can once again receive psx interrupt signals */
19 pthread_sigmask(SIG_SETMASK, &orig_sigbits, NULL);
20

21 return ret;
22 }

Listing 4.1: Code Snippet Showing the Affected Part of __wrap_pthread_create()

4.1.1.2 Solution Advice

While not critical, X41 advises fixing the error handling code to prevent any abuse from being
possible.

X41 D-Sec GmbH PUBLIC Page 15 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

4.1.2 LCAP-CR-23-02: Integer Overflow in _libcap_strdup()

Severity: MEDIUM
CWE: 190 – Integer Overflow or Wraparound
Affected Component: libcap/cap_alloc.c:_libcap_strdup()

4.1.2.1 Description

X41 found that in 32 bits execution mode, where sizeof(size_t) equals 4, the _libcap_strdup() func-
tion can suffer from an integer overflow of the input string is close to a length of 4GiB. In this
case len = strlen(old) + 1 + 2*sizeof(__u32);will overflow and results into a value much smaller than
4GiB.
As consequence the overflow check len & 0xffffffff) != lenwill have no effect and the strcpy() func-
tion at the end of the function will overwrite the heap.

1 __attribute__((visibility ("hidden"))) char *_libcap_strdup(const char *old)
2 {
3 struct _cap_alloc_s *header;
4 char *raw_data;
5 size_t len;
6

7 [...]
8

9 len = strlen(old) + 1 + 2*sizeof(__u32);
10 if (len < sizeof(struct _cap_alloc_s)) {
11 len = sizeof(struct _cap_alloc_s);
12 }
13 if ((len & 0xffffffff) != len) {
14 _cap_debug("len is too long for libcap to manage");
15 errno = EINVAL;
16 return NULL;
17 }
18

19 raw_data = calloc(1, len);
20

21 [...]
22

23 strcpy(raw_data, old);
24 return raw_data;
25 }

Listing 4.2: Code Snippet Showing the Affected Part of _libcap_strdup()

X41 D-Sec GmbH PUBLIC Page 16 of 28

https://cwe.mitre.org/data/definitions/190.html

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

4.1.2.2 Solution Advice

While the overflow is impossible to exploit on a pure 32 bits system because no user space ap-
plication can use the whole 32 bits address space it might be possible on a 64 bits kernel in 32
bits compat mode. In this mode user space is allowed to use the full 32 bits address space. X41
advises checking whether strlen() returns a sufficient large number to overflow the addition.

X41 D-Sec GmbH PUBLIC Page 17 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

4.2 Informational Notes

The following observations do not have a direct security impact, but are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

4.2.1 LCAP-CR-23-100: Missing Check of pam_set_data() Return Code

Affected Component: pam_cap

4.2.1.1 Description

While reviewing the pam_cap.so source code X41 noticed that the return code of pam_set_data()
is not checked. This function can fail and not detecting this failure can lead to undefined behavior.

1 static int set_capabilities(struct pam_cap_s *cs)
2 {
3 [...]
4 if (cs->defer) {
5 D(("configured to delay applying IAB"));
6 pam_set_data(cs->pamh, "pam_cap_iab", iab, iab_apply);
7 iab = NULL;
8 } else if (!cap_iab_set_proc(iab)) {
9 D(("able to set the IAB [%s] value", conf_caps));

10 ok = 1;
11 }
12 [...]
13 }

Listing 4.3: Code Snippet Showing the Affected Part of set_capabilities()

4.2.1.2 Solution Advice

X41 recommends to always check the returned value for being PAM_SUCCESS and abort other-
wise.

X41 D-Sec GmbH PUBLIC Page 18 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

4.2.2 LCAP-CR-23-101: Missing Permission Check of User Capability File

Affected Component: pam_cap

4.2.2.1 Description

While reviewing the pam_cap.so source code X41 noticed that the access permissions of the user
capability file are not checked. Relaxed permission of that file could allow an attacker overwriting
it and gaining capabilities at login time.

1 static char *read_capabilities_for_user(const char *user, const char *source)
2 {
3 [...]
4 cap_file = fopen(source, "r");
5 if (cap_file == NULL) {
6 D(("failed to open capability file"));
7 goto defer;
8 }
9 [...]

10 }

Listing 4.4: Code Snippet Showing the Affected Part of read_capabilities_for_user()

4.2.2.2 Solution Advice

While not critical, X41 advises to check the DAC permissions of the file to make sure it is not
world writable and owned by root.

X41 D-Sec GmbH PUBLIC Page 19 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

4.2.3 LCAP-CR-23-102: Problematic Usage of pthread_kill()

Affected Component:

4.2.3.1 Description

While reviewing the psx source codeX41noticed that the code seems to assume that pthread_kill()
returns an error code if a thread is no longer existent. Depending on the program logic this can
result into undefined behavior since it is not guaranteed that pthread_kill() will work on ter-
minated threads.

4.2.3.2 Solution Advice

While not critical, X41 advises to not assume that pthread_kill() will exhibit an error code if
the targeted thread is gone.

X41 D-Sec GmbH PUBLIC Page 20 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Review of the Mozilla Firefox updater1
• X41 Browser Security White Paper2
• Review of Cryptographic Protocols (Wire)3
• Identification of flaws in Fax Machines4,5
• Smartcard Stack Fuzzing6

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong tech-
nical background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/2 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf3 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf4 https://www.x41-dsec.de/lab/blog/fax/5 https://2018.zeronights.ru/en/reports/zero-fax-given/6 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 21 of 28

https://x41-dsec.de
mailto:info@x41-dsec.de
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

Acronyms

CWE Common Weakness Enumeration . 12

X41 D-Sec GmbH PUBLIC Page 22 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

A Fuzzing Harnesses

For additional coverage, this section provides all test harnesses used during the fuzzing campaignof the libcap library.

A.1 CLI Fuzzing of Tools capsh

1 ...
2

3 #ifndef SHELL
4 #define SHELL "/bin/bash"
5 #endif /* ndef SHELL */
6

7 #include "./capshdoc.h"
8

9 #include <limits.h>
10 #include "/AFLplusplus/utils/argv_fuzzing/argv-fuzz-inl.h"
11

12 ...
13

14 ssize_t fuzz_len;
15 unsigned char fuzz_buf[1024000];
16

17 #ifndef __AFL_FUZZ_TESTCASE_LEN
18 #define __AFL_FUZZ_TESTCASE_LEN fuzz_len
19 #define __AFL_FUZZ_TESTCASE_BUF fuzz_buf
20 #define __AFL_FUZZ_INIT() void sync(void);
21 #define __AFL_LOOP(x) \
22 ((fuzz_len = read(0, fuzz_buf, sizeof(fuzz_buf))) > 0 ? 1 : 0)
23 #define __AFL_INIT() sync()
24 #endif
25

26 __AFL_FUZZ_INIT();
27

28 int main(int argc, char *argv[], char *envp[])
29 {
30 pid_t child = 0;
31 unsigned i;
32 int strict = 0, quiet_start = 0, dont_set_env = 0;

X41 D-Sec GmbH PUBLIC Page 23 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

33 const char *shell = SHELL;
34

35 __AFL_INIT();
36

37 unsigned char *fuzzbuf2 = __AFL_FUZZ_TESTCASE_BUF;
38 while (__AFL_LOOP(UINT_MAX))
39 {
40 AFL_INIT_ARGV_PERSISTENT(fuzzbuf2);
41

42 ... // remaining main function of acountry
43 }
44 }

Listing A.1: Fuzzer capsh Tools

A.2 CLI Fuzzing of Tools getcap, setcap, getpcaps

The test harnesses are very similar to the one presented for the tool capsh in A.1.

A.3 FuzzingHarness for cap_copy_int, cap_from_text, cap_to_text,
cap_from_name

1 //#include "cap_extint.c"
2

3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <limits.h>
6 #include <unistd.h>
7

8 #include "libcap.h"
9

10 #define CAP_EXT_MAGIC "\220\302\001\121"
11 #define CAP_EXT_MAGIC_SIZE 4
12 const static __u8 external_magic[CAP_EXT_MAGIC_SIZE+1] = CAP_EXT_MAGIC;
13

14 struct cap_ext_struct {
15 __u8 magic[CAP_EXT_MAGIC_SIZE];
16 __u8 length_of_capset;
17 /*
18 * note, we arrange these so the caps are stacked with byte-size
19 * resolution
20 */
21 __u8 bytes[CAP_SET_SIZE][NUMBER_OF_CAP_SETS];
22 };
23

X41 D-Sec GmbH PUBLIC Page 24 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

24 ssize_t fuzz_len;
25 unsigned char fuzz_buf[1024000];
26

27 #ifndef __AFL_FUZZ_TESTCASE_LEN
28

29 #define __AFL_FUZZ_TESTCASE_LEN fuzz_len
30 #define __AFL_FUZZ_TESTCASE_BUF fuzz_buf
31 #define __AFL_FUZZ_INIT() void sync(void);
32 #define __AFL_LOOP(x) \
33 ((fuzz_len = read(0, fuzz_buf, sizeof(fuzz_buf))) > 0 ? 1 : 0)
34 #define __AFL_INIT() sync()
35

36 #endif
37

38 __AFL_FUZZ_INIT();
39

40 //#define FUZZ_GENERATE_TESTCASE 1
41 //#define FUZZ_TEST_TESTCASE 1
42

43 #define CAP_COPY_INT 1
44 //#define CAP_FROM_TEXT 1
45 //#define CAP_FROM_NAME 1
46

47 void generate_testcase(const char *filename)
48 {
49 #ifdef CAP_COPY_INT
50 cap_t caps = cap_get_pid(1);
51

52 ssize_t size = cap_size(caps);
53 void *buffer = malloc (size);
54

55 ssize_t copy_size = cap_copy_ext(buffer, caps, size);
56

57 FILE *fp = fopen(filename, "wb");
58 if (fp)
59 {
60 fwrite(buffer + CAP_EXT_MAGIC_SIZE, 1, size - CAP_EXT_MAGIC_SIZE, fp);
61 fclose(fp);
62 }
63

64 free(buffer);
65 #elif CAP_FROM_TEXT
66 const char *txt = c

"cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap=ep" c
;

↪→

↪→

67

68 FILE *fp = fopen(filename, "wb");
69 if (fp)
70 {
71 fwrite(txt, 1, strlen(txt) + 1, fp);
72 fclose(fp);
73 }

X41 D-Sec GmbH PUBLIC Page 25 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

74 #endif
75 }
76

77 void fuzz_test(unsigned char *buf, ssize_t len)
78 {
79 #ifdef CAP_COPY_INT
80 void *cap_ext = malloc(ssizeof(struct cap_ext_struct));
81

82 memcpy(cap_ext, external_magic, CAP_EXT_MAGIC_SIZE);
83 memcpy(cap_ext + CAP_EXT_MAGIC_SIZE, buf, len);
84

85 cap_t cap = cap_copy_int(cap_ext);
86 if (cap)
87 {
88 ssize_t textlen = 0;
89

90 char * text = cap_to_text(cap, &textlen);
91 printf("%s\n", text);
92

93 cap_free(text);
94 cap_free(cap);
95 }
96

97 free(cap_ext);
98 #elif CAP_FROM_TEXT
99 cap_t cap = cap_from_text(buf);

100 if (cap)
101 {
102 cap_free(cap);
103 }
104 #elif CAP_FROM_NAME
105 cap_value_t value = 0;
106 cap_from_name(buf, &value);
107 #endif
108 }
109

110 int main(int argc, char **argv)
111 {
112

113 #ifdef FUZZ_GENERATE_TESTCASE
114 generate_testcase("testcase");
115 return 0;
116 #endif
117

118 #ifdef FUZZ_TEST_TESTCASE
119 FILE *fp = fopen(argv[1], "rb");
120 if (fp)
121 {
122 ssize_t len = fread(fuzz_buf, 1, sizeof(fuzz_buf), fp);
123 fclose(fp);
124

125 printf("%ld bytes read\n", len);

X41 D-Sec GmbH PUBLIC Page 26 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

126

127 fuzz_test(fuzz_buf, len);
128 }
129 return 0;
130 #endif
131

132 #ifdef __AFL_HAVE_MANUAL_CONTROL
133 __AFL_INIT();
134 #endif
135

136 unsigned char *fuzz_buf2 = __AFL_FUZZ_TESTCASE_BUF;
137

138 while (__AFL_LOOP(UINT_MAX))
139 {
140 ssize_t cur_fuzz_len = __AFL_FUZZ_TESTCASE_LEN;
141 ssize_t remainLen = ssizeof(struct cap_ext_struct) - CAP_EXT_MAGIC_SIZE;
142

143 if (cur_fuzz_len > remainLen) continue;
144

145 fuzz_test(fuzz_buf2, cur_fuzz_len);
146 }
147

148 return 0;
149 }

Listing A.2: Fuzzer getcap, setcap, getpcaps

A.4 Other Test Harnesses

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <limits.h>
4 #include <unistd.h>
5 #include <fcntl.h>
6

7 extern char *read_capabilities_for_user(const char *user, const char *source);
8

9 int main(int argc, char **argv)
10 {
11 __AFL_INIT();
12

13 char *ret = read_capabilities_for_user("root", argv[1]);
14 if (ret)
15 {
16 free(ret);
17 }
18

X41 D-Sec GmbH PUBLIC Page 27 of 28

Source Code Audit on libcap for Open Source Technology Improvement Fund (OSTIF)

19 return 0;
20 }

Listing A.3: Fuzzer read_capabilities_for_user()

X41 D-Sec GmbH PUBLIC Page 28 of 28

	Executive Summary
	Findings Overview

	Introduction
	Scope
	Coverage
	Fuzzing

	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	LCAP-CR-23-01
	LCAP-CR-23-02

	Informational Notes
	LCAP-CR-23-100
	LCAP-CR-23-101
	LCAP-CR-23-102

	About X41 D-Sec GmbH
	Fuzzing Harnesses
	CLI Fuzzing of Tools capsh
	CLI Fuzzing of Tools getcap, setcap, getpcaps
	Fuzzing Harness for cap_copy_int, cap_from_text, cap_to_text, cap_from_name
	Other Test Harnesses

